`

Timezone: »

 
Maksym Andriushchenko, "Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks"
Maksym Andriushchenko

Sat Dec 14 02:30 PM -- 03:00 PM (PST) @ None
The problem of adversarial robustness has been studied extensively for neural networks. However, for boosted decision trees and decision stumps there are almost no results, even though they are widely used in practice (e.g. XGBoost) due to their accuracy, interpretability, and efficiency. We show in this paper that for boosted decision stumps the \textit{exact} min-max robust loss and test error for an $l_\infty$-attack can be computed in $O(T\log T)$ time per input, where $T$ is the number of decision stumps and the optimal update step of the ensemble can be done in $O(n^2\,T\log T)$, where $n$ is the number of data points. For boosted trees we show how to efficiently calculate and optimize an upper bound on the robust loss, which leads to state-of-the-art robust test error for boosted trees on MNIST (12.5\% for $\epsilon_\infty=0.3$), FMNIST (23.2\% for $\epsilon_\infty=0.1$), and CIFAR-10 (74.7\% for $\epsilon_\infty=8/255$). Moreover, the robust test error rates we achieve are competitive to the ones of provably robust CNNs. Code of our method is available at \url{https://git.io/Je18r}. This is a short version of the corresponding NeurIPS 2019 paper \cite{andriushchenko2019provably}.

Author Information

Maksym Andriushchenko (University of Tübingen / EPFL)

More from the Same Authors

  • 2021 : RobustBench: a standardized adversarial robustness benchmark »
    Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein
  • 2020 Poster: Understanding and Improving Fast Adversarial Training »
    Maksym Andriushchenko · Nicolas Flammarion
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 Poster: Provably robust boosted decision stumps and trees against adversarial attacks »
    Maksym Andriushchenko · Matthias Hein
  • 2017 Poster: Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation »
    Matthias Hein · Maksym Andriushchenko