`

Timezone: »

 
James Lucas, "Information-theoretic limitations on novel task generalization"
James Lucas

Sat Dec 14 11:30 AM -- 12:00 PM (PST) @

Machine learning models have traditionally been developed under the assumption that the training and test distributions match exactly. However, recent success in few-shot learning and related problems are encouraging signs that these models can be adapted to more realistic settings where train and test differ. Unfortunately, there is severely limited theoretical support for these algorithms and little is known about the difficulty of these problems. In this work, we provide novel information-theoretic lower-bounds on minimax rates of convergence for algorithms which are trained on data from multiple sources and tested on novel data. Our bounds depend intuitively on the information shared between sources of data and characterizes the difficulty of learning in this setting for arbitrary algorithms.

Author Information

James Lucas (University of Toronto)

More from the Same Authors

  • 2020 : Poster Session 3 (gather.town) »
    Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou
  • 2020 Poster: Regularized linear autoencoders recover the principal components, eventually »
    Xuchan Bao · James Lucas · Sushant Sachdeva · Roger Grosse
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · GaĆ«l Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 Poster: Lookahead Optimizer: k steps forward, 1 step back »
    Michael Zhang · James Lucas · Jimmy Ba · Geoffrey E Hinton
  • 2019 Poster: Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks »
    Qiyang Li · Saminul Haque · Cem Anil · James Lucas · Roger Grosse · Joern-Henrik Jacobsen
  • 2019 Poster: Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse »
    James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi