Timezone: »
Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized. In NSW the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensinal space.
Our main result is an exact polynomial-time algorithm for the two-criteria dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for k=2 groups, resolving an open problem of Samadi et al.[NeurIPS18], and a polynomial time algorithm for NSW objective for k=2 groups. We also give approximation algorithms for k>2. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with the results of several experiments indicating improved performance and generalized application of our algorithm on real-world datasets.
Author Information
Uthaipon Tantipongpipat (Georgia Tech)
Graduating PhD student in machine learning theory and optimization. Strong background in mathematics and algorithmic foundations of data science with hands-on implementations on real-world datasets. Strive for impact and efficiency while attentive to details. Enjoy public speaking and experienced in leading research projects. Published many theoretical results in academic conferences and developed several optimized algorithms for public use. My research includes • Approximation algorithms in optimal design in statistics, as known as design of experiments (DoE) using combinatorial optimization. Diversity or representative sampling. • Differential privacy – theory of privacy in growing database; its deployment in deep learning models such as RNNs, LSTMs, autoencoders, and GANs; and its application in private synthetic data generation. • Fairness in machine learning – fair principle component analysis (fair PCA) using convex optimization and randomized rounding to obtain low-rank solution to semi-definite programming Other Interests: model compressions; privacy and security in machine learning; fair and explainable/interpretable machine learning
Samira Samadi (Georgia Tech)
Mohit Singh (Georgia Tech)
Jamie Morgenstern (University of Washington)
Santosh Vempala (Georgia Tech)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Thu. Dec 12th 06:40 -- 06:45 PM Room West Ballroom C
More from the Same Authors
-
2023 Poster: Contrastive Moments: Unsupervised Halfspace Learning in Polynomial Time »
Xinyuan Cao · Santosh Vempala -
2022 Poster: Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space »
Yunbum Kook · Yin-Tat Lee · Ruoqi Shen · Santosh Vempala -
2021 Poster: Fast and Memory Efficient Differentially Private-SGD via JL Projections »
Zhiqi Bu · Sivakanth Gopi · Janardhan Kulkarni · Yin Tat Lee · Judy Hanwen Shen · Uthaipon Tantipongpipat -
2021 : An Interactive Tool for Computation with Assemblies of Neurons »
Seung Je Jung · Christos Papadimitriou · Santosh Vempala -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices »
Santosh Vempala · Andre Wibisono -
2019 Poster: Learning Auctions with Robust Incentive Guarantees »
Jacob Abernethy · Rachel Cummings · Bhuvesh Kumar · Sam Taggart · Jamie Morgenstern -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2018 Poster: Differential Privacy for Growing Databases »
Rachel Cummings · Sara Krehbiel · Kevin A Lai · Uthaipon Tantipongpipat -
2018 Poster: The Price of Fair PCA: One Extra dimension »
Samira Samadi · Uthaipon Tantipongpipat · Jamie Morgenstern · Mohit Singh · Santosh Vempala -
2017 Poster: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Spotlight: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2016 Poster: Fairness in Learning: Classic and Contextual Bandits »
Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth -
2015 Poster: Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's »
Vitaly Feldman · Will Perkins · Santosh Vempala -
2015 Poster: On the Pseudo-Dimension of Nearly Optimal Auctions »
Jamie Morgenstern · Tim Roughgarden -
2015 Spotlight: On the Pseudo-Dimension of Nearly Optimal Auctions »
Jamie Morgenstern · Tim Roughgarden