Timezone: »
Poster
Model Selection for Contextual Bandits
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo
Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #5
We introduce the problem of model selection for contextual bandits, where a
learner must adapt to the complexity of the optimal policy while balancing exploration and exploitation. Our main result is a new model selection guarantee for linear contextual bandits. We work in the stochastic realizable setting with a sequence of nested linear policy classes of dimension $d_1 < d_2 < \ldots$,
where the $m^\star$-th class contains the optimal policy, and we design an
algorithm that achieves $\tilde{O}(T^{2/3}d^{1/3}_{m^\star})$
regret with no prior knowledge of the optimal dimension
$d_{m^\star}$. The algorithm also achieves regret $\tilde{O}(T^{3/4} + \sqrt{Td_{m^\star}})$,
which is optimal for $d_{m^{\star}}\geq{}\sqrt{T}$. This is the first model selection result for contextual bandits with non-vacuous regret for
all values of $d_{m^\star}$, and to the best of our knowledge is the first positive result of this type for any online learning setting with partial information. The core of the algorithm is a new estimator for the gap in the best loss
achievable by two linear policy classes, which we show admits a
convergence rate faster than the rate required to learn the parameters for either class.
Author Information
Dylan Foster (MIT)
Akshay Krishnamurthy (Microsoft)
Haipeng Luo (University of Southern California)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Model Selection for Contextual Bandits »
Thu. Dec 12th 12:20 -- 12:25 AM Room West Exhibition Hall A
More from the Same Authors
-
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation »
Dylan Foster · Akshay Krishnamurthy · David Simchi-Levi · Yunzong Xu -
2022 : Clairvoyant Regret Minimization: Equivalence with Nemirovski’s Conceptual Prox Method and Extension to General Convex Games »
Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo -
2022 : Hybrid RL: Using both offline and online data can make RL efficient »
Yuda Song · Yifei Zhou · Ayush Sekhari · J. Bagnell · Akshay Krishnamurthy · Wen Sun -
2023 Poster: Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL with General Regularizers and Multiple Optimal Arms »
Tiancheng Jin · Junyan Liu · Haipeng Luo -
2023 Poster: Regret Matching$^+$: (In)Stability and Fast Convergence in Games »
Gabriele Farina · Julien Grand-Clément · Christian Kroer · Chung-Wei Lee · Haipeng Luo -
2023 Poster: Practical Contextual Bandits with Feedback Graphs »
Mengxiao Zhang · Yuheng Zhang · Olga Vrousgou · Haipeng Luo · Paul Mineiro -
2023 Poster: Exposing Attention Glitches with Flip-Flop Language Modeling »
Bingbin Liu · Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Cyril Zhang -
2023 Poster: Efficient Model-Free Exploration in Low-Rank MDPs »
Zak Mhammedi · Adam Block · Dylan J Foster · Alexander Rakhlin -
2023 Poster: Model-Free Reinforcement Learning with the Decision-Estimation Coefficient »
Dylan J Foster · Noah Golowich · Jian Qian · Alexander Rakhlin · Ayush Sekhari -
2023 Poster: Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games »
Yang Cai · Haipeng Luo · Chen-Yu Wei · Weiqiang Zheng -
2023 Poster: No-Regret Online Reinforcement Learning with Adversarial Losses and Transitions »
William Chang · Tiancheng Jin · Junyan Liu · Haipeng Luo · Chloé Rouyer · Chen-Yu Wei -
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback »
Yan Dai · Haipeng Luo · Liyu Chen -
2022 Poster: Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments »
Liyu Chen · Haipeng Luo -
2022 Poster: Uncoupled Learning Dynamics with $O(\log T)$ Swap Regret in Multiplayer Games »
Ioannis Anagnostides · Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Tuomas Sandholm -
2022 Poster: Interaction-Grounded Learning with Action-Inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan J Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2022 Poster: Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL »
Jinglin Chen · Aditya Modi · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal -
2022 Poster: Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback »
Yan Dai · Haipeng Luo · Liyu Chen -
2022 Poster: Understanding the Eluder Dimension »
Gene Li · Pritish Kamath · Dylan J Foster · Nati Srebro -
2022 Poster: Near-Optimal No-Regret Learning Dynamics for General Convex Games »
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm -
2022 Poster: On the Complexity of Adversarial Decision Making »
Dylan J Foster · Alexander Rakhlin · Ayush Sekhari · Karthik Sridharan -
2021 : Contributed Talk 3: Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation »
Yunzong Xu · Akshay Krishnamurthy · David Simchi-Levi -
2021 Poster: The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition »
Tiancheng Jin · Longbo Huang · Haipeng Luo -
2021 Poster: Last-iterate Convergence in Extensive-Form Games »
Chung-Wei Lee · Christian Kroer · Haipeng Luo -
2021 Poster: Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path »
Liyu Chen · Mehdi Jafarnia-Jahromi · Rahul Jain · Haipeng Luo -
2021 Poster: Gone Fishing: Neural Active Learning with Fisher Embeddings »
Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Sham Kakade -
2021 Oral: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Dylan Foster · Akshay Krishnamurthy -
2021 Poster: Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses »
Haipeng Luo · Chen-Yu Wei · Chung-Wei Lee -
2021 Poster: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Dylan Foster · Akshay Krishnamurthy -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 Oral: The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition »
Tiancheng Jin · Longbo Huang · Haipeng Luo -
2020 Poster: Provably adaptive reinforcement learning in metric spaces »
Tongyi Cao · Akshay Krishnamurthy -
2020 Poster: Adapting to Misspecification in Contextual Bandits »
Dylan Foster · Claudio Gentile · Mehryar Mohri · Julian Zimmert -
2020 Poster: Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs »
Chung-Wei Lee · Haipeng Luo · Chen-Yu Wei · Mengxiao Zhang -
2020 Poster: Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition »
Tiancheng Jin · Haipeng Luo -
2020 Spotlight: Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition »
Tiancheng Jin · Haipeng Luo -
2020 Oral: Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs »
Chung-Wei Lee · Haipeng Luo · Chen-Yu Wei · Mengxiao Zhang -
2020 Poster: Efficient Contextual Bandits with Continuous Actions »
Maryam Majzoubi · Chicheng Zhang · Rajan Chari · Akshay Krishnamurthy · John Langford · Aleksandrs Slivkins -
2020 Poster: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Poster: Comparator-Adaptive Convex Bandits »
Dirk van der Hoeven · Ashok Cutkosky · Haipeng Luo -
2020 Spotlight: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Oral: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Session: Orals & Spotlights Track 11: Learning Theory »
Dylan Foster · Nicolò Cesa-Bianchi -
2020 Poster: Independent Policy Gradient Methods for Competitive Reinforcement Learning »
Constantinos Daskalakis · Dylan Foster · Noah Golowich -
2020 Poster: Information Theoretic Regret Bounds for Online Nonlinear Control »
Sham Kakade · Akshay Krishnamurthy · Kendall Lowrey · Motoya Ohnishi · Wen Sun -
2020 : Real World RL with Vowpal Wabbit: Beyond Contextual Bandits »
John Langford · Marek Wydmuch · Maryam Majzoubi · Adith Swaminathan · · Dylan Foster · Paul Mineiro -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Sample Complexity of Learning Mixture of Sparse Linear Regressions »
Akshay Krishnamurthy · Arya Mazumdar · Andrew McGregor · Soumyabrata Pal -
2019 Poster: Equipping Experts/Bandits with Long-term Memory »
Kai Zheng · Haipeng Luo · Ilias Diakonikolas · Liwei Wang -
2019 Poster: Hypothesis Set Stability and Generalization »
Dylan Foster · Spencer Greenberg · Satyen Kale · Haipeng Luo · Mehryar Mohri · Karthik Sridharan -
2018 Poster: Contextual bandits with surrogate losses: Margin bounds and efficient algorithms »
Dylan Foster · Akshay Krishnamurthy -
2018 Poster: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Poster: Uniform Convergence of Gradients for Non-Convex Learning and Optimization »
Dylan Foster · Ayush Sekhari · Karthik Sridharan -
2018 Spotlight: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Poster: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Oral: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Spotlight: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Poster: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2017 Spotlight: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2016 Poster: Learning in Games: Robustness of Fast Convergence »
Dylan Foster · zhiyuan li · Thodoris Lykouris · Karthik Sridharan · Eva Tardos -
2015 : Discussion Panel »
Tim van Erven · Wouter Koolen · Peter Grünwald · Shai Ben-David · Dylan Foster · Satyen Kale · Gergely Neu -
2015 : Adaptive Online Learning »
Dylan Foster -
2015 Poster: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan -
2015 Spotlight: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan