Timezone: »
Poster
Bayesian Optimization under Heavy-tailed Payoffs
Sayak Ray Chowdhury · Aditya Gopalan
Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #11
We consider black box optimization of an unknown function in the nonparametric Gaussian process setting when the noise in the observed function values can be heavy tailed. This is in contrast to existing literature that typically assumes sub-Gaussian noise distributions for queries. Under the assumption that the unknown function belongs to the Reproducing Kernel Hilbert Space (RKHS) induced by a kernel, we first show that an adaptation of the well-known GP-UCB algorithm with reward truncation enjoys sublinear $\tilde{O}(T^{\frac{2 + \alpha}{2(1+\alpha)}})$ regret even with only the $(1+\alpha)$-th moments, $\alpha \in (0,1]$, of the reward distribution being bounded ($\tilde{O}$ hides logarithmic factors). However, for the common squared exponential (SE) and Mat\'{e}rn kernels, this is seen to be significantly larger than a fundamental $\Omega(T^{\frac{1}{1+\alpha}})$ lower bound on regret. We resolve this gap by developing novel Bayesian optimization algorithms, based on kernel approximation techniques, with regret bounds matching the lower bound in order for the SE kernel. We numerically benchmark the algorithms on environments based on both synthetic models and real-world data sets.
Author Information
Sayak Ray Chowdhury (Indian Institute of Science)
Aditya Gopalan (Indian Institute of Science)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Bayesian Optimization under Heavy-tailed Payoffs »
Wed. Dec 11th 12:35 -- 12:40 AM Room West Ballroom C
More from the Same Authors
-
2022 : Distributed Differential Privacy in Multi-Armed Bandits »
Sayak Ray Chowdhury · Xingyu Zhou -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 Poster: Combinatorial Bandits with Relative Feedback »
Aadirupa Saha · Aditya Gopalan -
2018 : Spotlights 2 »
Aditya Gopalan · Sungjoon Choi · Thomas Ringstrom · Roy Fox · Jonas Degrave · Xiya Cao · Karl Pertsch · Maximilian Igl · Brian Ichter -
2018 : Poster Session 1 »
Kyle H Ambert · Brandon Araki · Xiya Cao · Sungjoon Choi · Hao(Jackson) Cui · Jonas Degrave · Yaqi Duan · Mattie Fellows · Carlos Florensa · Karan Goel · Aditya Gopalan · Ming-Xu Huang · Jonathan Hunt · Cyril Ibrahim · Brian Ichter · Maximilian Igl · Zheng Tracy Ke · Igor Kiselev · Anuj Mahajan · Arash Mehrjou · Karl Pertsch · Alexandre Piche · Nicholas Rhinehart · Thomas Ringstrom · Reazul Hasan Russel · Oleh Rybkin · Ion Stoica · Sharad Vikram · Angelina Wang · Ting-Han Wei · Abigail H Wen · I-Chen Wu · Zhengwei Wu · Linhai Xie · Dinghan Shen -
2018 : Poster Session »
Lorenzo Masoero · Tammo Rukat · Runjing Liu · Sayak Ray Chowdhury · Daniel Coelho de Castro · Claudia Wehrhahn · Feras Saad · Archit Verma · Kelvin Hsu · Irineo Cabreros · Sandhya Prabhakaran · Yiming Sun · Maxime Rischard · Linfeng Liu · Adam Farooq · Jeremiah Liu · Melanie F. Pradier · Diego Romeres · Neill Campbell · Kai Xu · Mehmet M Dundar · Tucker Keuter · Prashnna Gyawali · Eli Sennesh · Alessandro De Palma · Daniel Flam-Shepherd · Takatomi Kubo