Timezone: »
Compressing word embeddings is important for deploying NLP models in memory-constrained settings. However, understanding what makes compressed embeddings perform well on downstream tasks is challenging---existing measures of compression quality often fail to distinguish between embeddings that perform well and those that do not. We thus propose the eigenspace overlap score as a new measure. We relate the eigenspace overlap score to downstream performance by developing generalization bounds for the compressed embeddings in terms of this score, in the context of linear and logistic regression. We then show that we can lower bound the eigenspace overlap score for a simple uniform quantization compression method, helping to explain the strong empirical performance of this method. Finally, we show that by using the eigenspace overlap score as a selection criterion between embeddings drawn from a representative set we compressed, we can efficiently identify the better performing embedding with up to 2x lower selection error rates than the next best measure of compression quality, and avoid the cost of training a separate model for each task of interest.
Author Information
Avner May (Stanford University)
Jian Zhang (Stanford University)
Tri Dao (Stanford University)
Christopher Ré (Stanford)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: On the Downstream Performance of Compressed Word Embeddings »
Fri. Dec 13th 12:05 -- 12:10 AM Room West Exhibition Hall A
More from the Same Authors
-
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 : SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation »
Arjun Desai · Andrew Schmidt · Elka Rubin · Christopher Sandino · Marianne Black · Valentina Mazzoli · Kathryn Stevens · Robert Boutin · Christopher Ré · Garry Gold · Brian Hargreaves · Akshay Chaudhari -
2021 : Combining Recurrent, Convolutional, and Continuous-Time Models with Structured Learnable Linear State-Space Layers »
Isys Johnson · Albert Gu · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2023 Poster: HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution »
Eric Nguyen · Michael Poli · Marjan Faizi · Armin Thomas · Michael Wornow · Callum Birch-Sykes · Stefano Massaroli · Aman Patel · Clayton Rabideau · Yoshua Bengio · Stefano Ermon · Christopher Ré · Stephen Baccus -
2023 Poster: Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture »
Dan Fu · Jessica R Grogan · Isys Johnson · Simran Arora · Evan Sabri Eyuboglu · Armin Thomas · Benjamin Spector · Michael Poli · Atri Rudra · Christopher Ré -
2023 Poster: A case for reframing automated medical image classification as segmentation »
Sarah Hooper · Mayee Chen · Khaled Saab · Kush Bhatia · Curtis Langlotz · Christopher Ré -
2023 Poster: TART: A plug-and-play Transformer module for task-agnostic reasoning »
Kush Bhatia · Avanika Narayan · Christopher De Sa · Christopher Ré -
2023 Poster: H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models »
Zhenyu Zhang · Ying Sheng · Tianyi Zhou · Tianlong Chen · Lianmin Zheng · Ruisi Cai · Zhao Song · Yuandong Tian · Christopher Ré · Clark Barrett · Zhangyang Wang · Beidi Chen -
2023 Poster: Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions »
Stefano Massaroli · Michael Poli · Dan Fu · Hermann Kumbong · David Romero · Rom Parnichkun · Aman Timalsina · Quinn McIntyre · Beidi Chen · Atri Rudra · Ce Zhang · Christopher Ré · Stefano Ermon · Yoshua Bengio -
2023 Poster: Skill-it! A data-driven skills framework for understanding and training language models »
Mayee Chen · Nicholas Roberts · Kush Bhatia · Jue WANG · Ce Zhang · Frederic Sala · Christopher Ré -
2023 Poster: Embroid: Unsupervised Prediction Smoothing Can Improve Few-Shot Classification »
Neel Guha · Mayee Chen · Kush Bhatia · Azalia Mirhoseini · Frederic Sala · Christopher Ré -
2023 Poster: LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models »
Neel Guha · Julian Nyarko · Daniel Ho · Christopher Ré · Adam Chilton · Aditya K · Alex Chohlas-Wood · Austin Peters · Brandon Waldon · Daniel Rockmore · Diego Zambrano · Dmitry Talisman · Enam Hoque · Faiz Surani · Frank Fagan · Galit Sarfaty · Gregory Dickinson · Haggai Porat · Jason Hegland · Jessica Wu · Joe Nudell · Joel Niklaus · John Nay · Jonathan Choi · Kevin Tobia · Margaret Hagan · Megan Ma · Michael Livermore · Nikon Rasumov-Rahe · Nils Holzenberger · Noam Kolt · Peter Henderson · Sean Rehaag · Sharad Goel · Shang Gao · Spencer Williams · Sunny Gandhi · Tom Zur · Varun Iyer · Zehua Li -
2023 Oral: Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture »
Dan Fu · Jessica R Grogan · Isys Johnson · Simran Arora · Evan Sabri Eyuboglu · Armin Thomas · Benjamin Spector · Michael Poli · Atri Rudra · Christopher Ré -
2022 Spotlight: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: On the Parameterization and Initialization of Diagonal State Space Models »
Albert Gu · Karan Goel · Ankit Gupta · Christopher Ré -
2022 Poster: Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data »
Armin Thomas · Christopher Ré · Russell Poldrack -
2022 Poster: HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions »
Lingjiao Chen · Zhihua Jin · Evan Sabri Eyuboglu · Christopher Ré · Matei Zaharia · James Zou -
2022 Poster: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Dan Fu · Stefano Ermon · Atri Rudra · Christopher Ré -
2022 Poster: Contrastive Adapters for Foundation Model Group Robustness »
Michael Zhang · Christopher Ré -
2022 Poster: Decentralized Training of Foundation Models in Heterogeneous Environments »
Binhang Yuan · Yongjun He · Jared Davis · Tianyi Zhang · Tri Dao · Beidi Chen · Percy Liang · Christopher Ré · Ce Zhang -
2022 Poster: Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Ré · Stefano Ermon -
2022 Poster: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: S4ND: Modeling Images and Videos as Multidimensional Signals with State Spaces »
Eric Nguyen · Karan Goel · Albert Gu · Gordon Downs · Preey Shah · Tri Dao · Stephen Baccus · Christopher Ré -
2022 Poster: Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees »
Jue WANG · Binhang Yuan · Luka Rimanic · Yongjun He · Tri Dao · Beidi Chen · Christopher Ré · Ce Zhang -
2021 Poster: Scatterbrain: Unifying Sparse and Low-rank Attention »
Beidi Chen · Tri Dao · Eric Winsor · Zhao Song · Atri Rudra · Christopher Ré -
2021 Poster: Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers »
Albert Gu · Isys Johnson · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2021 Poster: Rethinking Neural Operations for Diverse Tasks »
Nicholas Roberts · Mikhail Khodak · Tri Dao · Liam Li · Christopher Ré · Ameet Talwalkar -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton -
2020 Poster: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Spotlight: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Oral: Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent »
Benjamin Recht · Christopher Ré · Stephen Wright · Feng Niu -
2020 Poster: From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering »
Ines Chami · Albert Gu · Vaggos Chatziafratis · Christopher Ré -
2019 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Christian Muise · Kartik Talamadupula · Sameer Singh · Christopher Ré -
2019 Poster: Multi-Resolution Weak Supervision for Sequential Data »
Paroma Varma · Frederic Sala · Shiori Sagawa · Jason Fries · Dan Fu · Saelig Khattar · Ashwini Ramamoorthy · Ke Xiao · Kayvon Fatahalian · James Priest · Christopher Ré -
2019 Poster: Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices »
Vincent Chen · Sen Wu · Alexander Ratner · Jen Weng · Christopher Ré -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2019 Poster: Approximating the Permanent by Sampling from Adaptive Partitions »
Jonathan Kuck · Tri Dao · Hamid Rezatofighi · Ashish Sabharwal · Stefano Ermon -
2018 Workshop: Relational Representation Learning »
Aditya Grover · Paroma Varma · Frederic Sala · Christopher Ré · Jennifer Neville · Stefano Ermon · Steven Holtzen -
2018 Poster: Learning Compressed Transforms with Low Displacement Rank »
Anna Thomas · Albert Gu · Tri Dao · Atri Rudra · Christopher Ré -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2017 Workshop: ML Systems Workshop @ NIPS 2017 »
Aparna Lakshmiratan · Sarah Bird · Siddhartha Sen · Christopher Ré · Li Erran Li · Joseph Gonzalez · Daniel Crankshaw -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning to Compose Domain-Specific Transformations for Data Augmentation »
Alexander Ratner · Henry Ehrenberg · Zeshan Hussain · Jared Dunnmon · Christopher Ré -
2017 Poster: Gaussian Quadrature for Kernel Features »
Tri Dao · Christopher M De Sa · Christopher Ré -
2017 Spotlight: Gaussian Quadrature for Kernel Features »
Tri Dao · Christopher M De Sa · Christopher Ré -
2017 Poster: Inferring Generative Model Structure with Static Analysis »
Paroma Varma · Bryan He · Payal Bajaj · Nishith Khandwala · Imon Banerjee · Daniel Rubin · Christopher Ré -
2016 : Invited Talk: You've been using asynchrony wrong your whole life! (Chris Re, Stanford) »
Christopher Ré -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher Ré · Benjamin Recht -
2016 Poster: Sub-sampled Newton Methods with Non-uniform Sampling »
Peng Xu · Jiyan Yang · Farbod Roosta-Khorasani · Christopher Ré · Michael Mahoney -
2015 Poster: Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care »
Sorathan Chaturapruek · John Duchi · Christopher Ré -
2015 Poster: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré -
2015 Spotlight: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2015 Poster: Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Poster: Parallel Feature Selection Inspired by Group Testing »
Yingbo Zhou · Utkarsh Porwal · Ce Zhang · Hung Q Ngo · XuanLong Nguyen · Christopher Ré · Venu Govindaraju -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré