Timezone: »

 
Poster
Unsupervised Curricula for Visual Meta-Reinforcement Learning
Allan Jabri · Kyle Hsu · Abhishek Gupta · Benjamin Eysenbach · Sergey Levine · Chelsea Finn

Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #35

In principle, meta-reinforcement learning algorithms leverage experience across many tasks to learn fast reinforcement learning (RL) strategies that transfer to similar tasks. However, current meta-RL approaches rely on manually-defined distributions of training tasks, and hand-crafting these task distributions can be challenging and time-consuming. Can ``useful'' pre-training tasks be discovered in an unsupervised manner? We develop an unsupervised algorithm for inducing an adaptive meta-training task distribution, i.e. an automatic curriculum, by modeling unsupervised interaction in a visual environment. The task distribution is scaffolded by a parametric density model of the meta-learner's trajectory distribution. We formulate unsupervised meta-RL as information maximization between a latent task variable and the meta-learner’s data distribution, and describe a practical instantiation which alternates between integration of recent experience into the task distribution and meta-learning of the updated tasks. Repeating this procedure leads to iterative reorganization such that the curriculum adapts as the meta-learner's data distribution shifts. In particular, we show how discriminative clustering for visual representation can support trajectory-level task acquisition and exploration in domains with pixel observations, avoiding pitfalls of alternatives. In experiments on vision-based navigation and manipulation domains, we show that the algorithm allows for unsupervised meta-learning that transfers to downstream tasks specified by hand-crafted reward functions and serves as pre-training for more efficient supervised meta-learning of test task distributions.

Author Information

Allan Jabri (UC Berkeley)
Kyle Hsu (University of Toronto)
Abhishek Gupta (University of California, Berkeley)
Benjamin Eysenbach (Carnegie Mellon University)
Benjamin Eysenbach

Assistant professor at Princeton working on self-supervised reinforcement learning (scaling, algorithms, theory, and applications).

Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as applications in other decision-making domains. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more

Chelsea Finn (Stanford University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors