Timezone: »
Hyperbolic embeddings achieve excellent performance when embedding hierar- chical data structures like synonym or type hierarchies, but they can be limited by numerical error when ordinary floating-point numbers are used to represent points in hyperbolic space. Standard models such as the Poincaré disk and the Lorentz model have unbounded numerical error as points get far from the origin. To address this, we propose a new model which uses an integer-based tiling to represent any point in hyperbolic space with provably bounded numerical error. This allows us to learn high-precision embeddings without using BigFloats, and enables us to store the resulting embeddings with fewer bits. We evaluate our tiling-based model empirically, and show that it can both compress hyperbolic embeddings (down to 2% of a Poincaré embedding on WordNet Nouns) and learn more accurate embeddings on real-world datasets.
Author Information
Tao Yu (Cornell University)
Christopher De Sa (Cornell)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models »
Fri. Dec 13th 12:15 -- 12:20 AM Room West Exhibition Hall A
More from the Same Authors
-
2021 Poster: Representing Hyperbolic Space Accurately using Multi-Component Floats »
Tao Yu · Christopher De Sa -
2021 Poster: Hyperparameter Optimization Is Deceiving Us, and How to Stop It »
A. Feder Cooper · Yucheng Lu · Jessica Forde · Christopher De Sa -
2021 Poster: Equivariant Manifold Flows »
Isay Katsman · Aaron Lou · Derek Lim · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher RĂ© · Will Hamilton -
2020 Poster: Random Reshuffling is Not Always Better »
Christopher De Sa -
2020 Poster: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Random Reshuffling is Not Always Better »
Christopher De Sa -
2020 Poster: Neural Manifold Ordinary Differential Equations »
Aaron Lou · Derek Lim · Isay Katsman · Leo Huang · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2019 Poster: Dimension-Free Bounds for Low-Precision Training »
Zheng Li · Christopher De Sa -
2019 Poster: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Spotlight: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Poster: A New Defense Against Adversarial Images: Turning a Weakness into a Strength »
Shengyuan Hu · Tao Yu · Chuan Guo · Wei-Lun Chao · Kilian Weinberger -
2019 Poster: Channel Gating Neural Networks »
Weizhe Hua · Yuan Zhou · Christopher De Sa · Zhiru Zhang · G. Edward Suh