Timezone: »
We address the problem of meta-learning which learns a prior over hypothesis from a sample of meta-training tasks for fast adaptation on meta-testing tasks. A particularly simple yet successful paradigm for this research is model-agnostic meta-learning (MAML). Implementation and analysis of MAML, however, can be tricky; first-order approximation is usually adopted to avoid directly computing Hessian matrix but as a result the convergence and generalization guarantees remain largely mysterious for MAML. To remedy this deficiency, in this paper we propose a minibatch proximal update based meta-learning approach for learning to efficient hypothesis transfer. The principle is to learn a prior hypothesis shared across tasks such that the minibatch risk minimization biased regularized by this prior can quickly converge to the optimal hypothesis in each training task. The prior hypothesis training model can be efficiently optimized via SGD with provable convergence guarantees for both convex and non-convex problems. Moreover, we theoretically justify the benefit of the learnt prior hypothesis for fast adaptation to new few-shot learning tasks via minibatch proximal update. Experimental results on several few-shot regression and classification tasks demonstrate the advantages of our method over state-of-the-arts.
Author Information
Pan Zhou (National University of Singapore)
Xiaotong Yuan (Nanjing University of Information Science & Technology)
Huan Xu (Alibaba Group)
Shuicheng Yan (National University of Singapore)
Jiashi Feng (National University of Singapore)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Spotlight: Efficient Meta Learning via Minibatch Proximal Update »
Thu. Dec 12th 12:15 -- 12:20 AM Room West Ballroom A + B
More from the Same Authors
-
2020 : Task Similarity Aware Meta Learning: Theory-inspired Improvement on MAML »
Pan Zhou -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 Poster: Towards Understanding Why Lookahead Generalizes Better Than SGD and Beyond »
Pan Zhou · Hanshu Yan · Xiaotong Yuan · Jiashi Feng · Shuicheng Yan -
2021 Poster: How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness? »
Xinshuai Dong · Anh Tuan Luu · Min Lin · Shuicheng Yan · Hanwang Zhang -
2021 Poster: Direct Multi-view Multi-person 3D Pose Estimation »
tao wang · Jianfeng Zhang · Yujun Cai · Shuicheng Yan · Jiashi Feng -
2020 Poster: Towards Theoretically Understanding Why Sgd Generalizes Better Than Adam in Deep Learning »
Pan Zhou · Jiashi Feng · Chao Ma · Caiming Xiong · Steven Chu Hong Hoi · Weinan E -
2020 Poster: Theory-Inspired Path-Regularized Differential Network Architecture Search »
Pan Zhou · Caiming Xiong · Richard Socher · Steven Chu Hong Hoi -
2020 Oral: Theory-Inspired Path-Regularized Differential Network Architecture Search »
Pan Zhou · Caiming Xiong · Richard Socher · Steven Chu Hong Hoi -
2020 Poster: Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts »
Guilin Li · Junlei Zhang · Yunhe Wang · Chuanjian Liu · Matthias Tan · Yunfeng Lin · Wei Zhang · Jiashi Feng · Tong Zhang -
2020 Poster: Improving Generalization in Reinforcement Learning with Mixture Regularization »
KAIXIN WANG · Bingyi Kang · Jie Shao · Jiashi Feng -
2020 Poster: Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation »
Jianfeng Zhang · Xuecheng Nie · Jiashi Feng -
2020 Poster: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2020 Spotlight: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2018 Poster: New Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sampling and Convexity »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2018 Poster: Efficient Stochastic Gradient Hard Thresholding »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2018 Poster: A^2-Nets: Double Attention Networks »
Yunpeng Chen · Yannis Kalantidis · Jianshu Li · Shuicheng Yan · Jiashi Feng -
2017 Poster: Dual Path Networks »
Yunpeng Chen · Jianan Li · Huaxin Xiao · Xiaojie Jin · Shuicheng Yan · Jiashi Feng -
2017 Spotlight: Dual Path Networks »
Yunpeng Chen · Jianan Li · Huaxin Xiao · Xiaojie Jin · Shuicheng Yan · Jiashi Feng -
2017 Poster: Multimodal Learning and Reasoning for Visual Question Answering »
Ilija Ilievski · Jiashi Feng -
2017 Poster: A New Theory for Matrix Completion »
Guangcan Liu · Qingshan Liu · Xiaotong Yuan -
2017 Poster: Predicting Scene Parsing and Motion Dynamics in the Future »
Xiaojie Jin · Huaxin Xiao · Xiaohui Shen · Jimei Yang · Zhe Lin · Yunpeng Chen · Zequn Jie · Jiashi Feng · Shuicheng Yan -
2017 Poster: Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis »
Jian Zhao · Lin Xiong · Panasonic Karlekar Jayashree · Jianshu Li · Fang Zhao · Zhecan Wang · Panasonic Sugiri Pranata · Panasonic Shengmei Shen · Shuicheng Yan · Jiashi Feng -
2016 Poster: Tree-Structured Reinforcement Learning for Sequential Object Localization »
Zequn Jie · Xiaodan Liang · Jiashi Feng · Xiaojie Jin · Wen Lu · Shuicheng Yan -
2014 Poster: Robust Logistic Regression and Classification »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan -
2014 Poster: Convex Optimization Procedure for Clustering: Theoretical Revisit »
Changbo Zhu · Huan Xu · Chenlei Leng · Shuicheng Yan -
2014 Poster: On a Theory of Nonparametric Pairwise Similarity for Clustering: Connecting Clustering to Classification »
Yingzhen Yang · Feng Liang · Shuicheng Yan · Zhangyang Wang · Thomas S Huang -
2013 Poster: Online Robust PCA via Stochastic Optimization »
Jiashi Feng · Huan Xu · Shuicheng Yan -
2013 Poster: Online PCA for Contaminated Data »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan