Timezone: »

 
Poster
Finding Friend and Foe in Multi-Agent Games
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum

Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #197

Recent breakthroughs in AI for multi-agent games like Go, Poker, and Dota, have seen great strides in recent years. Yet none of these games address the real-life challenge of cooperation in the presence of unknown and uncertain teammates. This challenge is a key game mechanism in hidden role games. Here we develop the DeepRole algorithm, a multi-agent reinforcement learning agent that we test on "The Resistance: Avalon", the most popular hidden role game. DeepRole combines counterfactual regret minimization (CFR) with deep value networks trained through self-play. Our algorithm integrates deductive reasoning into vector-form CFR to reason about joint beliefs and deduce partially observable actions. We augment deep value networks with constraints that yield interpretable representations of win probabilities. These innovations enable DeepRole to scale to the full Avalon game. Empirical game-theoretic methods show that DeepRole outperforms other hand-crafted and learned agents in five-player Avalon. DeepRole played with and against human players on the web in hybrid human-agent teams. We find that DeepRole outperforms human players as both a cooperator and a competitor.

Author Information

Jack Serrino (MIT)
Max Kleiman-Weiner (Harvard/MIT)
David Parkes (Harvard University)

David C. Parkes is Gordon McKay Professor of Computer Science in the School of Engineering and Applied Sciences at Harvard University. He was the recipient of the NSF Career Award, the Alfred P. Sloan Fellowship, the Thouron Scholarship and the Harvard University Roslyn Abramson Award for Teaching. Parkes received his Ph.D. degree in Computer and Information Science from the University of Pennsylvania in 2001, and an M.Eng. (First class) in Engineering and Computing Science from Oxford University in 1995. At Harvard, Parkes leads the EconCS group and teaches classes in artificial intelligence, optimization, and topics at the intersection between computer science and economics. Parkes has served as Program Chair of ACM EC’07 and AAMAS’08 and General Chair of ACM EC’10, served on the editorial board of Journal of Artificial Intelligence Research, and currently serves as Editor of Games and Economic Behavior and on the boards of Journal of Autonomous Agents and Multi-agent Systems and INFORMS Journal of Computing. His research interests include computational mechanism design, electronic commerce, stochastic optimization, preference elicitation, market design, bounded rationality, computational social choice, networks and incentives, multi-agent systems, crowd-sourcing and social computing.

Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors