Timezone: »
Despite an explosion in the number of experimentally determined, atomically detailed structures of biomolecules, many critical tasks in structural biology remain data-limited. Whether performance in such tasks can be improved by using large repositories of tangentially related structural data remains an open question. To address this question, we focused on a central problem in biology: predicting how proteins interact with one another—that is, which surfaces of one protein bind to those of another protein. We built a training dataset, the Database of Interacting Protein Structures (DIPS), that contains biases but is two orders of magnitude larger than those used previously. We found that these biases significantly degrade the performance of existing methods on gold-standard data. Hypothesizing that assumptions baked into the hand-crafted features on which these methods depend were the source of the problem, we developed the first end-to-end learning model for protein interface prediction, the Siamese Atomic Surfacelet Network (SASNet). Using only spatial coordinates and identities of atoms, SASNet outperforms state-of-the-art methods trained on gold-standard structural data, even when trained on only 3% of our new dataset. Code and data available at https://github.com/drorlab/DIPS.
Author Information
Raphael Townshend (Stanford University)
Rishi Bedi (System1 Biosciences)
Patricia Suriana (Stanford University)
Ron Dror (Stanford University)
More from the Same Authors
-
2021 : ATOM3D: Tasks on Molecules in Three Dimensions »
Raphael Townshend · Martin Vögele · Patricia Suriana · Alex Derry · Alexander Powers · Yianni Laloudakis · Sidhika Balachandar · Bowen Jing · Brandon Anderson · Stephan Eismann · Risi Kondor · Russ Altman · Ron Dror -
2021 Workshop: Machine Learning in Structural Biology »
Ellen Zhong · Raphael Townshend · Stephan Eismann · Namrata Anand · Roshan Rao · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Bonnie Berger -
2021 : ATOM3D: Tasks on Molecules in Three Dimensions »
Raphael Townshend · Martin Vögele · Patricia Suriana · Alex Derry · Alexander Powers · Yianni Laloudakis · Sidhika Balachandar · Bowen Jing · Brandon Anderson · Stephan Eismann · Risi Kondor · Russ Altman · Ron Dror -
2020 : Protein model quality assessment using rotation-equivariant, hierarchical neural networks »
Stephan Eismann · Patricia Suriana · Bowen Jing · Raphael Townshend · Ron Dror -
2020 : Happy Hour »
Raphael Townshend -
2020 : Concluding Remarks »
Raphael Townshend -
2020 : Mohammed AlQuraishi intro »
Raphael Townshend -
2020 : Contributed Talk - Learning from Protein Structure with Geometric Vector Perceptrons »
Bowen Jing · Stephan Eismann · Patricia Suriana · Raphael Townshend · Ron Dror -
2020 : Lunch + Panel Discussion on Future of ML for Structural Biology (Starts at 1pm) »
Raphael Townshend -
2020 : Michael Levitt intro »
Raphael Townshend -
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2020 : Opening Remarks »
Raphael Townshend -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu