`

Timezone: »

 
Poster
Learning Representations by Maximizing Mutual Information Across Views
Philip Bachman · R Devon Hjelm · William Buchwalter

Thu Dec 12 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #32

We propose an approach to self-supervised representation learning based on maximizing mutual information between features extracted from multiple views of a shared context. For example, one could produce multiple views of a local spatio-temporal context by observing it from different locations (e.g., camera positions within a scene), and via different modalities (e.g., tactile, auditory, or visual). Or, an ImageNet image could provide a context from which one produces multiple views by repeatedly applying data augmentation. Maximizing mutual information between features extracted from these views requires capturing information about high-level factors whose influence spans multiple views – e.g., presence of certain objects or occurrence of certain events. Following our proposed approach, we develop a model which learns image representations that significantly outperform prior methods on the tasks we consider. Most notably, using self-supervised learning, our model learns representations which achieve 68.1% accuracy on ImageNet using standard linear evaluation. This beats prior results by over 12% and concurrent results by 7%. When we extend our model to use mixture-based representations, segmentation behaviour emerges as a natural side-effect. Our code is available online: https://github.com/Philip-Bachman/amdim-public.

Author Information

Philip Bachman (Microsoft Research)
R Devon Hjelm (Microsoft Research)
William Buchwalter (Microsoft)

More from the Same Authors

  • 2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
    Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville
  • 2020 Poster: Deep Reinforcement and InfoMax Learning »
    Bogdan Mazoure · Remi Tachet des Combes · Thang Long Doan · Philip Bachman · R Devon Hjelm
  • 2019 : Poster Session »
    Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2019 Poster: Unsupervised State Representation Learning in Atari »
    Ankesh Anand · Evan Racah · Sherjil Ozair · Yoshua Bengio · Marc-Alexandre Côté · R Devon Hjelm
  • 2019 Poster: On Adversarial Mixup Resynthesis »
    Christopher Beckham · Sina Honari · Alex Lamb · Vikas Verma · Farnoosh Ghadiri · R Devon Hjelm · Yoshua Bengio · Chris Pal
  • 2016 Poster: An Architecture for Deep, Hierarchical Generative Models »
    Philip Bachman
  • 2015 Poster: Data Generation as Sequential Decision Making »
    Philip Bachman · Doina Precup
  • 2015 Spotlight: Data Generation as Sequential Decision Making »
    Philip Bachman · Doina Precup
  • 2014 Poster: Learning with Pseudo-Ensembles »
    Philip Bachman · Ouais Alsharif · Doina Precup