Timezone: »
Even though neural networks enjoy widespread use, they still struggle to learn the basic laws of physics. How might we endow them with better inductive biases? In this paper, we draw inspiration from Hamiltonian mechanics to train models that learn and respect exact conservation laws in an unsupervised manner. We evaluate our models on problems where conservation of energy is important, including the two-body problem and pixel observations of a pendulum. Our model trains faster and generalizes better than a regular neural network. An interesting side effect is that our model is perfectly reversible in time.
Author Information
Sam Greydanus (Oregon State University)
I am a recent graduate of Dartmouth College, where I majored in physics and dabbled in everything else. I have interned at CERN, Microsoft Azure, and the DARPA Explainable AI Project. I like to use memory-based models to generate sequences and policies. So far, I have used them to approximate the Enigma cipher, generate realistic handwriting, and visualize how reinforcement-learning agents play Atari games. One of my priorities as a scientist is to explain my work clearly and make it easy to replicate.
Misko Dzamba (Freenome)
Jason Yosinski (Uber AI; Recursion)
Dr. Jason Yosinski is a machine learning researcher, was a founding member of Uber AI Labs, and is scientific adviser to Recursion Pharmaceuticals and several other companies. His work focuses on building more capable and more understandable AI. As scientists and engineers build increasingly powerful AI systems, the abilities of these systems increase faster than does our understanding of them, motivating much of his work on AI Neuroscience: an emerging field of study that investigates fundamental properties and behaviors of AI systems. Dr. Yosinski completed his PhD as a NASA Space Technology Research Fellow working at the Cornell Creative Machines Lab, the University of Montreal, Caltech/NASA Jet Propulsion Laboratory, and Google DeepMind. His work on AI has been featured on NPR, Fast Company, the Economist, TEDx, XKCD, and on the BBC. Prior to his academic career, Jason cofounded two web technology companies and started a program in the Los Angeles school district that teaches students algebra via hands-on robotics. In his free time, Jason enjoys cooking, sailing, motorcycling, reading, paragliding, and sometimes pretending he's an artist.
More from the Same Authors
-
2020 Poster: Supermasks in Superposition »
Mitchell Wortsman · Vivek Ramanujan · Rosanne Liu · Aniruddha Kembhavi · Mohammad Rastegari · Jason Yosinski · Ali Farhadi -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 : Neural Reparameterization Improves Structural Optimization »
Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus -
2019 Poster: LCA: Loss Change Allocation for Neural Network Training »
Janice Lan · Rosanne Liu · Hattie Zhou · Jason Yosinski -
2019 Poster: Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask »
Hattie Zhou · Janice Lan · Rosanne Liu · Jason Yosinski -
2018 : Jason Yosinski, "Good and bad assumptions in model design and interpretability" »
Jason Yosinski -
2018 Workshop: AI for social good »
Margaux Luck · Tristan Sylvain · Joseph Paul Cohen · Arsene Fansi Tchango · Valentine Goddard · Aurelie Helouis · Yoshua Bengio · Sam Greydanus · Cody Wild · Taras Kucherenko · Arya Farahi · Jonathan Penn · Sean McGregor · Mark Crowley · Abhishek Gupta · Kenny Chen · Myriam Côté · Rediet Abebe -
2018 Poster: Faster Neural Networks Straight from JPEG »
Lionel Gueguen · Alex Sergeev · Ben Kadlec · Rosanne Liu · Jason Yosinski -
2018 Poster: An intriguing failing of convolutional neural networks and the CoordConv solution »
Rosanne Liu · Joel Lehman · Piero Molino · Felipe Petroski Such · Eric Frank · Alex Sergeev · Jason Yosinski -
2017 : Applications 2 »
Sam Greydanus -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2017 Poster: SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability »
Maithra Raghu · Justin Gilmer · Jason Yosinski · Jascha Sohl-Dickstein -
2016 Demonstration: Adventures with Deep Generator Networks »
Jason Yosinski · Anh Nguyen · Jeff Clune · Douglas K Bemis -
2016 Poster: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks »
Anh Nguyen · Alexey Dosovitskiy · Jason Yosinski · Thomas Brox · Jeff Clune -
2014 Poster: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2014 Demonstration: Playing with Convnets »
Jason Yosinski · Hod Lipson -
2014 Oral: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson