Timezone: »
Unitary recurrent neural networks (URNNs) have been proposed as a method to overcome the vanishing and exploding gradient problem in modeling data with long-term dependencies. A basic question is how restrictive is the unitary constraint on the possible input-output mappings of such a network? This works shows that for any contractive RNN with ReLU activations, there is a URNN with at most twice the number of hidden states and the identical input-output mapping. Hence, with ReLU activations, URNNs are as expressive as general RNNs. In contrast, for certain smooth activations, it is shown that the input-output mapping of an RNN cannot be matched with a URNN, even with an arbitrary number of states. The theoretical results are supported by experiments on modeling of slowly-varying dynamical systems.
Author Information
Melikasadat Emami (UCLA)
Mojtaba Sahraee Ardakan (UCLA)
Sundeep Rangan (NYU)
Alyson Fletcher (UCLA)
More from the Same Authors
-
2022 Poster: Instability and Local Minima in GAN Training with Kernel Discriminators »
Evan Becker · Parthe Pandit · Sundeep Rangan · Alyson Fletcher -
2020 Poster: Matrix Inference and Estimation in Multi-Layer Models »
Parthe Pandit · Mojtaba Sahraee Ardakan · Sundeep Rangan · Philip Schniter · Alyson Fletcher -
2018 Poster: Plug-in Estimation in High-Dimensional Linear Inverse Problems: A Rigorous Analysis »
Alyson Fletcher · Parthe Pandit · Sundeep Rangan · Subrata Sarkar · Philip Schniter -
2017 Poster: Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems »
Alyson Fletcher · Mojtaba Sahraee-Ardakan · Sundeep Rangan · Philip Schniter -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2016 : Welcome and Opening Remarks »
Alyson Fletcher · Konrad P Koerding -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 Workshop: Statistical Methods for Understanding Neural Systems »
Alyson Fletcher · Jakob H Macke · Ryan Adams · Jascha Sohl-Dickstein -
2014 Poster: Scalable Inference for Neuronal Connectivity from Calcium Imaging »
Alyson Fletcher · Sundeep Rangan -
2014 Spotlight: Scalable Inference for Neuronal Connectivity from Calcium Imaging »
Alyson Fletcher · Sundeep Rangan -
2013 Workshop: High-dimensional Statistical Inference in the Brain »
Alyson Fletcher · Dmitri B Chklovskii · Fritz Sommer · Ian H Stevenson -
2012 Poster: Approximate Message Passing with Consistent Parameter Estimation and Applications to Sparse Learning »
Ulugbek S Kamilov · Sundeep Rangan · Alyson Fletcher · MIchael Unser -
2011 Poster: Neural Reconstruction with Approximate Message Passing (NeuRAMP) »
Alyson Fletcher · Sundeep Rangan · Lav R Varshney · Aniruddha Bhargava -
2009 Poster: Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis »
Alyson Fletcher · Sundeep Rangan -
2009 Spotlight: Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis »
Alyson Fletcher · Sundeep Rangan -
2009 Poster: Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing »
Sundeep Rangan · Alyson Fletcher · Vivek K Goyal -
2009 Spotlight: Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing »
Sundeep Rangan · Alyson Fletcher · Vivek K Goyal -
2008 Poster: Resolution Limits of Sparse Coding in High Dimensions »
Alyson Fletcher · Sundeep Rangan · Vivek K Goyal