Timezone: »
Text-based interactive recommendation provides richer user feedback and has demonstrated advantages over traditional interactive recommender systems. However, recommendations can easily violate preferences of users from their past natural-language feedback, since the recommender needs to explore new items for further improvement. To alleviate this issue, we propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time. Specifically, we leverage a discriminator to detect recommendations violating user historical preference, which is incorporated into the standard RL objective of maximizing expected cumulative future rewards. Our proposed framework is general and is further extended to the task of constrained text generation. Empirical results show that the proposed method yields consistent improvement relative to standard RL methods.
Author Information
Ruiyi Zhang (Duke University)
I am currently a fourth-year Ph.D. student at Department of Computer Science, Duke University. My research interest is Deep Learning.
Tong Yu (Samsung Research America)
Yilin Shen (Samsung Research America)
Hongxia Jin (Samsung Research America)
Changyou Chen (University at Buffalo)
More from the Same Authors
-
2021 : Exploring Covariate and Concept Shift for Out-of-Distribution Detection »
Junjiao Tian · Yen-Chang Hsu · Yilin Shen · Hongxia Jin · Zsolt Kira -
2022 Poster: Why do We Need Large Batchsizes in Contrastive Learning? A Gradient-Bias Perspective »
Changyou Chen · Jianyi Zhang · Yi Xu · Liqun Chen · Jiali Duan · Yiran Chen · Son Tran · Belinda Zeng · Trishul Chilimbi -
2020 Poster: Learning Manifold Implicitly via Explicit Heat-Kernel Learning »
Yufan Zhou · Changyou Chen · Jinhui Xu -
2020 Poster: Bayesian Multi-type Mean Field Multi-agent Imitation Learning »
Fan Yang · Alina Vereshchaka · Changyou Chen · Wen Dong -
2020 Spotlight: Bayesian Multi-type Mean Field Multi-agent Imitation Learning »
Fan Yang · Alina Vereshchaka · Changyou Chen · Wen Dong -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Poster: Certified Adversarial Robustness with Additive Noise »
Bai Li · Changyou Chen · Wenlin Wang · Lawrence Carin -
2017 Poster: ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching »
Chunyuan Li · Hao Liu · Changyou Chen · Yuchen Pu · Liqun Chen · Ricardo Henao · Lawrence Carin -
2016 Poster: Towards Unifying Hamiltonian Monte Carlo and Slice Sampling »
Yizhe Zhang · Xiangyu Wang · Changyou Chen · Ricardo Henao · Kai Fan · Lawrence Carin -
2016 Poster: Stochastic Gradient MCMC with Stale Gradients »
Changyou Chen · Nan Ding · Chunyuan Li · Yizhe Zhang · Lawrence Carin -
2015 Poster: On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators »
Changyou Chen · Nan Ding · Lawrence Carin -
2014 Poster: Bayesian Sampling Using Stochastic Gradient Thermostats »
Nan Ding · Youhan Fang · Ryan Babbush · Changyou Chen · Robert D Skeel · Hartmut Neven -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang