`

Timezone: »

 
Poster
Multi-task Learning for Aggregated Data using Gaussian Processes
Fariba Yousefi · Michael T Smith · Mauricio Álvarez

Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #173

Aggregated data is commonplace in areas such as epidemiology and demography. For example, census data for a population is usually given as averages defined over time periods or spatial resolutions (cities, regions or countries). In this paper, we present a novel multi-task learning model based on Gaussian processes for joint learning of variables that have been aggregated at different input scales. Our model represents each task as the linear combination of the realizations of latent processes that are integrated at a different scale per task. We are then able to compute the cross-covariance between the different tasks either analytically or numerically. We also allow each task to have a potentially different likelihood model and provide a variational lower bound that can be optimised in a stochastic fashion making our model suitable for larger datasets. We show examples of the model in a synthetic example, a fertility dataset and an air pollution prediction application.

Author Information

Fariba Yousefi (University of Sheffield)
Michael T Smith (University of Sheffield)

I’m currently a post-doc researcher at the University of Sheffield, in Neil Lawrence’s lab. We’re developing new tools to allow data to be anonymised, through the framework of differential privacy. As part of an innovate UK collaboration we’re building the scikic inference tool, which will provide both a conversation interface and a backend API for inferring demographic and lifestyle features about individuals. It is hoped it will be a useful tool to demonstrate the power of machine learning. In the future we hope to develop a user-centric data model for the analysis and storage of user data, with the motivation that personalised medicine and associated research requires access to user data. I spent most of 2014 lecturing at Makerere University, Kampala, Uganda. There I became involved in the field of Development Informatics, and have several on-going research topics; covering air pollution, nutrition-data, automated microscopy, traffic collision data and malaria distribution prediction. A variety of machine learning methods have been applied (for example Gaussian Process models for the model of malaria distribution). More details about some of these projects can be found at the Artificial Intelligence in the Developing World (AI-DEV) group’s website.

Mauricio Álvarez (University of Sheffield)

More from the Same Authors

  • 2021 Poster: Modular Gaussian Processes for Transfer Learning »
    Pablo Moreno-Muñoz · Antonio Artes · Mauricio Álvarez
  • 2021 Poster: Learning Nonparametric Volterra Kernels with Gaussian Processes »
    Magnus Ross · Michael T Smith · Mauricio Álvarez
  • 2021 Poster: Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features »
    Thomas McDonald · Mauricio Álvarez
  • 2020 Poster: Multi-task Causal Learning with Gaussian Processes »
    Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 : Poster session »
    Michael Melese Woldeyohannis · Bernardt Duvenhage · Nyamos Waigama · Asaye Bir Senay · Claire Babirye · Tensaye Ayalew · Kelechi Ogueji · Vinay Prabhu · Prabu Ravindran · Fadilulah Wahab · ChukwuNonso H Nwokoye · Paul Duckworth · Hafte Abera · Abebe Mideksa · Loubna Benabbou · Anugraha Sinha · Ivan Kiskin · Robert Soden · Tupokigwe Isagah · Rehema Mwawado · Yimer Mohammed · Bryan Wilder · Daniel Omeiza · Sunayana Rane · Richard Mgaya · Samsun Knight · Jessenia Gonzalez Villarreal · Eyob Beyene · Monika Obrocka Tulinska · Luis Fernando Cantu Diaz de Leon · Joseph Aro · Michael T Smith · Michael Famoroti · Praneeth Vepakomma · Ramesh Raskar · Debjani Bhowmick · Chukwunonso H Nwokoye · Alejandro Noriega Campero · Hope Mbelwa · Anusua Trivedi
  • 2018 Poster: Heterogeneous Multi-output Gaussian Process Prediction »
    Pablo Moreno-Muñoz · Antonio Artés · Mauricio Álvarez
  • 2018 Spotlight: Heterogeneous Multi-output Gaussian Process Prediction »
    Pablo Moreno-Muñoz · Antonio Artés · Mauricio Álvarez
  • 2017 : Final remarks »
    Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez
  • 2017 : Opening remarks »
    Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez
  • 2017 Workshop: Transparent and interpretable Machine Learning in Safety Critical Environments »
    Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez
  • 2017 Poster: Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes »
    Zhenwen Dai · Mauricio Álvarez · Neil Lawrence