Timezone: »
Recently there has been a significant interest in learning disentangled representations, as they promise increased interpretability, generalization to unseen scenarios and faster learning on downstream tasks. In this paper, we investigate the usefulness of different notions of disentanglement for improving the fairness of downstream prediction tasks based on representations. We consider the setting where the goal is to predict a target variable based on the learned representation of high-dimensional observations (such as images) that depend on both the target variable and an unobserved sensitive variable. We show that in this setting both the optimal and empirical predictions can be unfair, even if the target variable and the sensitive variable are independent. Analyzing the representations of more than 12600 trained state-of-the-art disentangled models, we observe that several disentanglement scores are consistently correlated with increased fairness, suggesting that disentanglement may be a useful property to encourage fairness when sensitive variables are not observed.
Author Information
Francesco Locatello (ETH Zürich - MPI Tübingen)
Gabriele Abbati (University of Oxford)
Thomas Rainforth (University of Oxford)
Stefan Bauer (MPI for Intelligent Systems)
Bernhard Schölkopf (MPI for Intelligent Systems)
Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.
Olivier Bachem (Google Brain)
More from the Same Authors
-
2021 : Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation »
Daniel Freeman · Erik Frey · Anton Raichuk · Sertan Girgin · Igor Mordatch · Olivier Bachem -
2021 Spotlight: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Spotlight: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Distributionally robust chance constrained programs using maximum mean discrepancy »
Yassine Nemmour · Bernhard Schölkopf · Jia-Jie Zhu -
2021 : Certifiably Robust Variational Autoencoders »
Ben Barrett · Alexander Camuto · Matthew Willetts · Thomas Rainforth -
2021 : Explainable medical image analysis by leveraging human-interpretable features through mutual information minimization »
Erick M Cobos · Thomas Kuestner · Bernhard Schölkopf · Sergios Gatidis -
2021 : Amortized Bayesian inference of gravitational waves with normalizing flows »
Maximilian Dax · Stephen Green · Jakob Macke · Bernhard Schölkopf -
2021 : DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 : Learning Neural Causal Models with Active Interventions »
Nino Scherrer · Olexa Bilaniuk · Yashas Annadani · Anirudh Goyal · Patrick Schwab · Bernhard Schölkopf · Michael Mozer · Yoshua Bengio · Stefan Bauer · Nan Rosemary Ke -
2021 : On the Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir Karimi · Bernhard Schölkopf -
2021 : Certifiably Robust Variational Autoencoders »
Ben Barrett · Alexander Camuto · Matthew Willetts · Thomas Rainforth -
2021 : Certifiably Robust Variational Autoencoders »
Ben Barrett · Alexander Camuto · Matthew Willetts · Thomas Rainforth -
2022 : Atmospheric retrievals of exoplanets using learned parameterizations of pressure-temperature profiles »
Timothy Gebhard · Daniel Angerhausen · Björn Konrad · Eleonora Alei · Sascha Quanz · Bernhard Schölkopf -
2022 : Addressing out-of-distribution data for flow-based gravitational wave inference »
Maximilian Dax · Stephen Green · Jonas Wildberger · Jonathan Gair · Michael Puerrer · Jakob Macke · Alessandra Buonanno · Bernhard Schölkopf -
2022 : Causal Discovery for Modular World Models »
Anson Lei · Bernhard Schölkopf · Ingmar Posner -
2022 : Flow Annealed Importance Sampling Bootstrap »
Laurence Midgley · Vincent Stimper · Gregor Simm · Bernhard Schölkopf · José Miguel Hernández-Lobato -
2022 : A Causal Framework to Quantify Robustness of Mathematical Reasoning with Language Models »
Alessandro Stolfo · Zhijing Jin · Kumar Shridhar · Bernhard Schölkopf · Mrinmaya Sachan -
2022 : Evaluating vaccine allocation strategies using simulation-assisted causal modelling »
Armin Kekić · Jonas Dehning · Luigi Gresele · Julius von Kügelgen · Viola Priesemann · Bernhard Schölkopf -
2022 : Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 : Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 : Fifteen-minute Competition Overview Video »
Nico Gürtler · Georg Martius · Pavel Kolev · Sebastian Blaes · Manuel Wuethrich · Markus Wulfmeier · Cansu Sancaktar · Martin Riedmiller · Arthur Allshire · Bernhard Schölkopf · Annika Buchholz · Stefan Bauer -
2022 : A General-Purpose Neural Architecture for Geospatial Systems »
Martin Weiss · Nasim Rahaman · Frederik Träuble · Francesco Locatello · Alexandre Lacoste · Yoshua Bengio · Erran Li Li · Chris Pal · Bernhard Schölkopf -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis »
Ronan Perry · Julius von Kügelgen · Bernhard Schölkopf -
2022 Spotlight: Embrace the Gap: VAEs Perform Independent Mechanism Analysis »
Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve -
2022 Competition: Real Robot Challenge III - Learning Dexterous Manipulation from Offline Data in the Real World »
Nico Gürtler · Georg Martius · Sebastian Blaes · Pavel Kolev · Cansu Sancaktar · Stefan Bauer · Manuel Wuethrich · Markus Wulfmeier · Martin Riedmiller · Arthur Allshire · Annika Buchholz · Bernhard Schölkopf -
2022 : Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions »
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 Poster: Exploring the Latent Space of Autoencoders with Interventional Assays »
Felix Leeb · Stefan Bauer · Michel Besserve · Bernhard Schölkopf -
2022 Poster: Amortized Inference for Causal Structure Learning »
Lars Lorch · Scott Sussex · Jonas Rothfuss · Andreas Krause · Bernhard Schölkopf -
2022 Poster: Neural Attentive Circuits »
Martin Weiss · Nasim Rahaman · Francesco Locatello · Chris Pal · Yoshua Bengio · Bernhard Schölkopf · Erran Li Li · Nicolas Ballas -
2022 Poster: Assaying Out-Of-Distribution Generalization in Transfer Learning »
Florian Wenzel · Andrea Dittadi · Peter Gehler · Carl-Johann Simon-Gabriel · Max Horn · Dominik Zietlow · David Kernert · Chris Russell · Thomas Brox · Bernt Schiele · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: Direct Advantage Estimation »
Hsiao-Ru Pan · Nico Gürtler · Alexander Neitz · Bernhard Schölkopf -
2022 Poster: A Continuous Time Framework for Discrete Denoising Models »
Andrew Campbell · Joe Benton · Valentin De Bortoli · Thomas Rainforth · George Deligiannidis · Arnaud Doucet -
2022 Poster: Rethinking Variational Inference for Probabilistic Programs with Stochastic Support »
Tim Reichelt · Luke Ong · Thomas Rainforth -
2022 Poster: Probable Domain Generalization via Quantile Risk Minimization »
Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf -
2022 Poster: Interventions, Where and How? Experimental Design for Causal Models at Scale »
Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer -
2022 Poster: Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis »
Ronan Perry · Julius von Kügelgen · Bernhard Schölkopf -
2022 Poster: Sampling without Replacement Leads to Faster Rates in Finite-Sum Minimax Optimization »
Aniket Das · Bernhard Schölkopf · Michael Muehlebach -
2022 Poster: AutoML Two-Sample Test »
Jonas M. Kübler · Vincent Stimper · Simon Buchholz · Krikamol Muandet · Bernhard Schölkopf -
2022 Poster: Embrace the Gap: VAEs Perform Independent Mechanism Analysis »
Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve -
2022 Poster: When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment »
Zhijing Jin · Sydney Levine · Fernando Gonzalez Adauto · Ojasv Kamal · Maarten Sap · Mrinmaya Sachan · Rada Mihalcea · Josh Tenenbaum · Bernhard Schölkopf -
2022 Poster: Function Classes for Identifiable Nonlinear Independent Component Analysis »
Simon Buchholz · Michel Besserve · Bernhard Schölkopf -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2021 : Live Q&A Session 1 with Yoshua Bengio, Leyla Isik, Konrad Kording, Bernhard Scholkopf, Amit Sharma, Joshua Vogelstein, Weiwei Yang »
Yoshua Bengio · Leyla Isik · Konrad Kording · Bernhard Schölkopf · Joshua T Vogelstein · Weiwei Yang -
2021 : Dominguez Olmedo, Karimi, Schölkopf - On the Adversarial Robustness of Causal Algorithmic Recourse »
Ricardo Dominguez-Olmedo · Amir Karimi · Bernhard Schölkopf -
2021 : Panel Discussion 3 »
Taylor Webb · Hakwan Lau · Bernhard Schölkopf · Jiangying Zhou · Lior Horesh · Francesca Rossi -
2021 : Causal World Models »
Bernhard Schölkopf -
2021 : Boxhead: A Dataset for Learning Hierarchical Representations »
Yukun Chen · Andrea Dittadi · Frederik Träuble · Stefan Bauer · Bernhard Schölkopf -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 Poster: Dynamic Inference with Neural Interpreters »
Nasim Rahaman · Muhammad Waleed Gondal · Shruti Joshi · Peter Gehler · Yoshua Bengio · Francesco Locatello · Bernhard Schölkopf -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Causal Influence Detection for Improving Efficiency in Reinforcement Learning »
Maximilian Seitzer · Bernhard Schölkopf · Georg Martius -
2021 Poster: Independent mechanism analysis, a new concept? »
Luigi Gresele · Julius von Kügelgen · Vincent Stimper · Bernhard Schölkopf · Michel Besserve -
2021 : Real Robot Challenge II + Q&A »
Stefan Bauer · Joel Akpo · Manuel Wuethrich · Nan Rosemary Ke · Anirudh Goyal · Thomas Steinbrenner · Felix Widmaier · Annika Buchholz · Bernhard Schölkopf · Dieter Büchler · Ludovic Righetti · Franziska Meier -
2021 Poster: Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods »
Desi R Ivanova · Adam Foster · Steven Kleinegesse · Michael Gutmann · Thomas Rainforth -
2021 Poster: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2021 Poster: What Matters for Adversarial Imitation Learning? »
Manu Orsini · Anton Raichuk · Leonard Hussenot · Damien Vincent · Robert Dadashi · Sertan Girgin · Matthieu Geist · Olivier Bachem · Olivier Pietquin · Marcin Andrychowicz -
2021 Poster: Iterative Teaching by Label Synthesis »
Weiyang Liu · Zhen Liu · Hanchen Wang · Liam Paull · Bernhard Schölkopf · Adrian Weller -
2021 Poster: Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning »
Jannik Kossen · Neil Band · Clare Lyle · Aidan Gomez · Thomas Rainforth · Yarin Gal -
2021 Poster: The Inductive Bias of Quantum Kernels »
Jonas Kübler · Simon Buchholz · Bernhard Schölkopf -
2021 Poster: Backward-Compatible Prediction Updates: A Probabilistic Approach »
Frederik Träuble · Julius von Kügelgen · Matthäus Kleindessner · Francesco Locatello · Bernhard Schölkopf · Peter Gehler -
2021 Poster: Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style »
Julius von Kügelgen · Yash Sharma · Luigi Gresele · Wieland Brendel · Bernhard Schölkopf · Michel Besserve · Francesco Locatello -
2021 Poster: DiBS: Differentiable Bayesian Structure Learning »
Lars Lorch · Jonas Rothfuss · Bernhard Schölkopf · Andreas Krause -
2021 Poster: Regret Bounds for Gaussian-Process Optimization in Large Domains »
Manuel Wuethrich · Bernhard Schölkopf · Andreas Krause -
2021 Oral: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2020 : Contributed Talk 3: Algorithmic Recourse: from Counterfactual Explanations to Interventions »
Amir-Hossein Karimi · Bernhard Schölkopf · Isabel Valera -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Object-Centric Learning with Slot Attention »
Francesco Locatello · Dirk Weissenborn · Thomas Unterthiner · Aravindh Mahendran · Georg Heigold · Jakob Uszkoreit · Alexey Dosovitskiy · Thomas Kipf -
2020 Spotlight: Object-Centric Learning with Slot Attention »
Francesco Locatello · Dirk Weissenborn · Thomas Unterthiner · Aravindh Mahendran · Georg Heigold · Jakob Uszkoreit · Alexey Dosovitskiy · Thomas Kipf -
2020 Memorial: In Memory of Olivier Chapelle »
Bernhard Schölkopf · Andre Elisseeff · Olivier Bousquet · Vladimir Vapnik · Jason E Weston -
2020 Poster: Learning Kernel Tests Without Data Splitting »
Jonas Kübler · Wittawat Jitkrittum · Bernhard Schölkopf · Krikamol Muandet -
2020 Poster: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Poster: Causal analysis of Covid-19 Spread in Germany »
Atalanti Mastakouri · Bernhard Schölkopf -
2020 Spotlight: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Poster: Relative gradient optimization of the Jacobian term in unsupervised deep learning »
Luigi Gresele · Giancarlo Fissore · Adrián Javaloy · Bernhard Schölkopf · Aapo Hyvarinen -
2019 : Bernhard Schölkopf »
Bernhard Schölkopf -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : Disentanglement Challenge - Disentanglement and Results of the Challenge Stages 1 & 2 »
Djordje Miladinovic · Stefan Bauer · Daniel Keysers -
2019 Poster: Are Disentangled Representations Helpful for Abstract Visual Reasoning? »
Sjoerd van Steenkiste · Francesco Locatello · Jürgen Schmidhuber · Olivier Bachem -
2019 Poster: On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset »
Muhammad Waleed Gondal · Manuel Wuethrich · Djordje Miladinovic · Francesco Locatello · Martin Breidt · Valentin Volchkov · Joel Akpo · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Stochastic Frank-Wolfe for Composite Convex Minimization »
Francesco Locatello · Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Poster: Perceiving the arrow of time in autoregressive motion »
Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann -
2019 Poster: Selecting causal brain features with a single conditional independence test per feature »
Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing -
2019 Poster: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Spotlight: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Poster: Kernel Stein Tests for Multiple Model Comparison »
Jen Ning Lim · Makoto Yamada · Bernhard Schölkopf · Wittawat Jitkrittum -
2019 Spotlight: Perceiving the arrow of time in autoregressive motion »
Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : Learning Independent Mechanisms »
Bernhard Schölkopf -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Poster: Assessing Generative Models via Precision and Recall »
Mehdi S. M. Sajjadi · Olivier Bachem · Mario Lucic · Olivier Bousquet · Sylvain Gelly -
2018 Poster: Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models »
Alexander Neitz · Giambattista Parascandolo · Stefan Bauer · Bernhard Schölkopf -
2017 : Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation »
Alice Oh · Bernhard Schölkopf -
2017 : Poster Spotlights »
Francesco Locatello · Ari Pakman · Da Tang · Thomas Rainforth · Zalan Borsos · Marko Järvenpää · Eric Nalisnick · Gabriele Abbati · XIAOYU LU · Jonathan Huggins · Rachit Singh · Rui Luo -
2017 Poster: Avoiding Discrimination through Causal Reasoning »
Niki Kilbertus · Mateo Rojas Carulla · Giambattista Parascandolo · Moritz Hardt · Dominik Janzing · Bernhard Schölkopf -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2017 Poster: AdaGAN: Boosting Generative Models »
Ilya Tolstikhin · Sylvain Gelly · Olivier Bousquet · Carl-Johann SIMON-GABRIEL · Bernhard Schölkopf -
2016 : Probabilistic structure discovery in time series data »
David Janz · Brooks Paige · Thomas Rainforth · Jan-Willem van de Meent -
2016 Poster: Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels »
Ilya Tolstikhin · Bharath Sriperumbudur · Bernhard Schölkopf -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2016 Poster: Consistent Kernel Mean Estimation for Functions of Random Variables »
Carl-Johann Simon-Gabriel · Adam Scibior · Ilya Tolstikhin · Bernhard Schölkopf -
2014 Poster: Kernel Mean Estimation via Spectral Filtering »
Krikamol Muandet · Bharath Sriperumbudur · Bernhard Schölkopf -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Workshop: NIPS 2013 Workshop on Causality: Large-scale Experiment Design and Inference of Causal Mechanisms »
Isabelle Guyon · Leon Bottou · Bernhard Schölkopf · Alexander Statnikov · Evelyne Viegas · james m robins -
2013 Poster: The Randomized Dependence Coefficient »
David Lopez-Paz · Philipp Hennig · Bernhard Schölkopf -
2013 Poster: Statistical analysis of coupled time series with Kernel Cross-Spectral Density operators. »
Michel Besserve · Nikos K Logothetis · Bernhard Schölkopf -
2013 Poster: Causal Inference on Time Series using Restricted Structural Equation Models »
Jonas Peters · Dominik Janzing · Bernhard Schölkopf -
2012 Poster: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Spotlight: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Poster: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2012 Spotlight: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2012 Poster: The representer theorem for Hilbert spaces: a necessary and sufficient condition »
Francesco Dinuzzo · Bernhard Schölkopf -
2011 Workshop: Philosophy and Machine Learning »
Marcello Pelillo · Joachim M Buhmann · Tiberio Caetano · Bernhard Schölkopf · Larry Wasserman -
2011 Workshop: Cosmology meets Machine Learning »
Michael Hirsch · Sarah Bridle · Bernhard Schölkopf · Phil Marshall · Stefan Harmeling · Mark Girolami -
2011 Invited Talk: From kernels to causal inference »
Bernhard Schölkopf -
2011 Poster: Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance »
Peter Gehler · Carsten Rother · Martin Kiefel · Lumin Zhang · Bernhard Schölkopf -
2011 Poster: Causal Discovery with Cyclic Additive Noise Models »
Joris M Mooij · Dominik Janzing · Tom Heskes · Bernhard Schölkopf -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake »
Stefan Harmeling · Michael Hirsch · Bernhard Schölkopf -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Probabilistic latent variable models for distinguishing between cause and effect »
Joris M Mooij · Oliver Stegle · Dominik Janzing · Kun Zhang · Bernhard Schölkopf -
2009 Workshop: Connectivity Inference in Neuroimaging »
Karl Friston · Moritz Grosse-Wentrup · Uta Noppeney · Bernhard Schölkopf -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2008 Workshop: Causality: objectives and assessment »
Isabelle Guyon · Dominik Janzing · Bernhard Schölkopf -
2008 Mini Symposium: Computational Photography »
Bill Freeman · Bernhard Schölkopf -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Poster: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Poster: Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance »
Jeremy Hill · Jason Farquhar · Suzanne Martens · Felix Bießmann · Bernhard Schölkopf -
2008 Poster: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Spotlight: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Spotlight: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Spotlight: Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance »
Jeremy Hill · Jason Farquhar · Suzanne Martens · Felix Bießmann · Bernhard Schölkopf -
2008 Poster: An empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis »
Gabriele B Schweikert · Christian Widmer · Bernhard Schölkopf · Gunnar Rätsch -
2008 Poster: Diffeomorphic Dimensionality Reduction »
Christian Walder · Bernhard Schölkopf -
2007 Spotlight: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Poster: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Spotlight: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Implicit Surfaces with Globally Regularised and Compactly Supported Basis Functions »
Christian Walder · Bernhard Schölkopf · Olivier Chapelle -
2006 Poster: Learning Dense 3D Correspondence »
Florian Steinke · Bernhard Schölkopf · Volker Blanz -
2006 Poster: A Local Learning Approach for Clustering »
Mingrui Wu · Bernhard Schölkopf -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: A Nonparametric Approach to Bottom-Up Visual Saliency »
Wolf Kienzle · Felix A Wichmann · Bernhard Schölkopf · Matthias Franz -
2006 Poster: Learning with Hypergraphs: Clustering, Classification, and Embedding »
Denny Zhou · Jiayuan Huang · Bernhard Schölkopf