Timezone: »
The ability for policies to generalize to new environments is key to the broad application of RL agents. A promising approach to prevent an agent’s policy from overfitting to a limited set of training environments is to apply regularization techniques originally developed for supervised learning. However, there are stark differences between supervised learning and RL. We discuss those differences and propose modifications to existing regularization techniques in order to better adapt them to RL. In particular, we focus on regularization techniques relying on the injection of noise into the learned function, a family that includes some of the most widely used approaches such as Dropout and Batch Normalization. To adapt them to RL, we propose Selective Noise Injection (SNI), which maintains the regularizing effect the injected noise has, while mitigating the adverse effects it has on the gradient quality. Furthermore, we demonstrate that the Information Bottleneck (IB) is a particularly well suited regularization technique for RL as it is effective in the low-data regime encountered early on in training RL agents. Combining the IB with SNI, we significantly outperform current state of the art results, including on the recently proposed generalization benchmark Coinrun.
Author Information
Maximilian Igl (University of Oxford)
Kamil Ciosek (Microsoft)
Yingzhen Li (Microsoft Research Cambridge)
Sebastian Tschiatschek (Microsoft Research)
Cheng Zhang (Microsoft Research, Cambridge, UK)
Cheng Zhang is a principal researcher at Microsoft Research Cambridge, UK. She leads the Data Efficient Decision Making (Project Azua) team in Microsoft. Before joining Microsoft, she was with the statistical machine learning group of Disney Research Pittsburgh, located at Carnegie Mellon University. She received her Ph.D. from the KTH Royal Institute of Technology. She is interested in advancing machine learning methods, including variational inference, deep generative models, and sequential decision-making under uncertainty; and adapting machine learning to social impactful applications such as education and healthcare. She co-organized the Symposium on Advances in Approximate Bayesian Inference from 2017 to 2019.
Sam Devlin (Microsoft Research)
Katja Hofmann (Microsoft Research)
Dr. Katja Hofmann is a Principal Researcher at the [Game Intelligence](http://aka.ms/gameintelligence/) group at [Microsoft Research Cambridge, UK](https://www.microsoft.com/en-us/research/lab/microsoft-research-cambridge/). There, she leads a research team that focuses on reinforcement learning with applications in modern video games. She and her team strongly believe that modern video games will drive a transformation of how we interact with AI technology. One of the projects developed by her team is [Project Malmo](https://www.microsoft.com/en-us/research/project/project-malmo/), which uses the popular game Minecraft as an experimentation platform for developing intelligent technology. Katja's long-term goal is to develop AI systems that learn to collaborate with people, to empower their users and help solve complex real-world problems. Before joining Microsoft Research, Katja completed her PhD in Computer Science as part of the [ILPS](https://ilps.science.uva.nl/) group at the [University of Amsterdam](https://www.uva.nl/en). She worked with Maarten de Rijke and Shimon Whiteson on interactive machine learning algorithms for search engines.
More from the Same Authors
-
2022 : A Causal AI Suite for Decision-Making »
Emre Kiciman · Eleanor Dillon · Darren Edge · Adam Foster · Joel Jennings · Chao Ma · Robert Ness · Nick Pawlowski · Amit Sharma · Cheng Zhang -
2022 : Deep End-to-end Causal Inference »
Tomas Geffner · Javier Antorán · Adam Foster · Wenbo Gong · Chao Ma · Emre Kiciman · Amit Sharma · Angus Lamb · Martin Kukla · Nick Pawlowski · Miltiadis Allamanis · Cheng Zhang -
2022 : Rhino: Deep Causal Temporal Relationship Learning with history-dependent noise »
Wenbo Gong · Joel Jennings · Cheng Zhang · Nick Pawlowski -
2022 : Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning »
Matthew Ashman · Chao Ma · Agrin Hilmkil · Joel Jennings · Cheng Zhang -
2022 : Fifteen-minute Competition Overview Video »
Jack Wang · Joel Jennings · Cheng Zhang · Wenbo Gong · Simon Woodhead · Nick Pawlowski · Digory Smith · Craig Barton -
2022 : Contextual Squeeze-and-Excitation »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2022 : Imitating Human Behaviour with Diffusion Models »
Tim Pearce · Tabish Rashid · Anssi Kanervisto · David Bignell · Mingfei Sun · Raluca Georgescu · Sergio Valcarcel Macua · Shan Zheng Tan · Ida Momennejad · Katja Hofmann · Sam Devlin -
2022 Competition: Causal Insights for Learning Paths in Education »
Wenbo Gong · Digory Smith · Jack Wang · Simon Woodhead · Nick Pawlowski · Joel Jennings · Cheng Zhang · Craig Barton -
2022 : Closing Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 : Opening Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 Poster: Simultaneous Missing Value Imputation and Structure Learning with Groups »
Pablo Morales-Alvarez · Wenbo Gong · Angus Lamb · Simon Woodhead · Simon Peyton Jones · Nick Pawlowski · Miltiadis Allamanis · Cheng Zhang -
2022 Poster: Uni[MASK]: Unified Inference in Sequential Decision Problems »
Micah Carroll · Orr Paradise · Jessy Lin · Raluca Georgescu · Mingfei Sun · David Bignell · Stephanie Milani · Katja Hofmann · Matthew Hausknecht · Anca Dragan · Sam Devlin -
2022 Poster: Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2021 : Towards RL applications in video games and with human users »
Katja Hofmann -
2021 Workshop: Deep Generative Models and Downstream Applications »
José Miguel Hernández-Lobato · Yingzhen Li · Yichuan Zhang · Cheng Zhang · Austin Tripp · Weiwei Pan · Oren Rippel -
2021 : Methods:: Understanding Human-like Behavior in Video Game Navigation »
Evelyn Zuniga · Stephanie Milani · Katja Hofmann -
2021 : IGLU: Interactive Grounded Language Understanding in a Collaborative Environment + Q&A »
Julia Kiseleva · Ziming Li · Mohammad Aliannejadi · Maartje Anne ter Hoeve · Mikhail Burtsev · Alexey Skrynnik · Artem Zholus · Aleksandr Panov · Katja Hofmann · Kavya Srinet · arthur szlam · Michel Galley · Ahmed Awadallah -
2021 Poster: Grounding Spatio-Temporal Language with Transformers »
Tristan Karch · Laetitia Teodorescu · Katja Hofmann · Clément Moulin-Frier · Pierre-Yves Oudeyer -
2021 Poster: Snowflake: Scaling GNNs to high-dimensional continuous control via parameter freezing »
Charles Blake · Vitaly Kurin · Maximilian Igl · Shimon Whiteson -
2021 Poster: Memory Efficient Meta-Learning with Large Images »
John Bronskill · Daniela Massiceti · Massimiliano Patacchiola · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2020 Workshop: Competition Track Saturday »
Hugo Jair Escalante · Katja Hofmann -
2020 Workshop: Competition Track Friday »
Hugo Jair Escalante · Katja Hofmann -
2020 : Opening - Competition Track Session »
Katja Hofmann · Hugo Jair Escalante -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: A Causal View on Robustness of Neural Networks »
Cheng Zhang · Kun Zhang · Yingzhen Li -
2020 Poster: How do fair decisions fare in long-term qualification? »
Xueru Zhang · Ruibo Tu · Yang Liu · Mingyan Liu · Hedvig Kjellstrom · Kun Zhang · Cheng Zhang -
2020 Tutorial: (Track1) Advances in Approximate Inference Q&A »
Yingzhen Li · Cheng Zhang -
2020 Poster: Multi-task Batch Reinforcement Learning with Metric Learning »
Jiachen Li · Quan Vuong · Shuang Liu · Minghua Liu · Kamil Ciosek · Henrik Christensen · Hao Su -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2020 Tutorial: (Track1) Advances in Approximate Inference »
Yingzhen Li · Cheng Zhang -
2019 : Multi-Task Reinforcement Learning and Generalization »
Katja Hofmann -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : The MineRL competition »
Misa Ogura · Joe Booth · Sophia Sun · Nicholay Topin · Brandon Houghton · William Guss · Stephanie Milani · Oriol Vinyals · Katja Hofmann · JIA KIM · Karolis Ramanauskas · Florian Laurent · Daichi Nishio · Anssi Kanervisto · Alexey Skrynnik · Artemij Amiranashvili · Christian Scheller · KAIXIN WANG · Yanick Schraner -
2019 Poster: Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation »
Ruibo Tu · Kun Zhang · Bo Bertilson · Hedvig Kjellstrom · Cheng Zhang -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Better Exploration with Optimistic Actor Critic »
Kamil Ciosek · Quan Vuong · Robert Loftin · Katja Hofmann -
2019 Spotlight: Better Exploration with Optimistic Actor Critic »
Kamil Ciosek · Quan Vuong · Robert Loftin · Katja Hofmann -
2019 Poster: Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning »
David Janz · Jiri Hron · Przemysław Mazur · Katja Hofmann · José Miguel Hernández-Lobato · Sebastian Tschiatschek -
2019 Tutorial: Reinforcement Learning: Past, Present, and Future Perspectives »
Katja Hofmann -
2018 : Spotlights 2 »
Aditya Gopalan · Sungjoon Choi · Thomas Ringstrom · Roy Fox · Jonas Degrave · Xiya Cao · Karl Pertsch · Maximilian Igl · Brian Ichter -
2018 : Poster Session 1 »
Kyle H Ambert · Brandon Araki · Xiya Cao · Sungjoon Choi · Hao(Jackson) Cui · Jonas Degrave · Yaqi Duan · Mattie Fellows · Carlos Florensa · Karan Goel · Aditya Gopalan · Ming-Xu Huang · Jonathan Hunt · Cyril Ibrahim · Brian Ichter · Maximilian Igl · Zheng Tracy Ke · Igor Kiselev · Anuj Mahajan · Arash Mehrjou · Karl Pertsch · Alexandre Piche · Nicholas Rhinehart · Thomas Ringstrom · Reazul Hasan Russel · Oleh Rybkin · Ion Stoica · Sharad Vikram · Angelina Wang · Ting-Han Wei · Abigail H Wen · I-Chen Wu · Zhengwei Wu · Linhai Xie · Dinghan Shen -
2018 : How Players Speak to an Intelligent Game Character Using Natural Language Messages »
Katja Hofmann -
2017 : Panel: "How can we characterise the landscape of intelligent systems and locate human-like intelligence in it?" »
Josh Tenenbaum · Gary Marcus · Katja Hofmann -
2017 : Katja Hofmann: 'Video games and the road to collaborative AI' »
Katja Hofmann -
2016 Demonstration: Project Malmo - Minecraft for AI Research »
Katja Hofmann · Matthew A Johnson · Fernando Diaz · Alekh Agarwal · Tim Hutton · David Bignell · Evelyne Viegas