Timezone: »

Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck
Maximilian Igl · Kamil Ciosek · Yingzhen Li · Sebastian Tschiatschek · Cheng Zhang · Sam Devlin · Katja Hofmann

Thu Dec 10:45 AM -- 12:45 PM PST @ East Exhibition Hall B + C #228

The ability for policies to generalize to new environments is key to the broad application of RL agents. A promising approach to prevent an agent’s policy from overfitting to a limited set of training environments is to apply regularization techniques originally developed for supervised learning. However, there are stark differences between supervised learning and RL. We discuss those differences and propose modifications to existing regularization techniques in order to better adapt them to RL. In particular, we focus on regularization techniques relying on the injection of noise into the learned function, a family that includes some of the most widely used approaches such as Dropout and Batch Normalization. To adapt them to RL, we propose Selective Noise Injection (SNI), which maintains the regularizing effect the injected noise has, while mitigating the adverse effects it has on the gradient quality. Furthermore, we demonstrate that the Information Bottleneck (IB) is a particularly well suited regularization technique for RL as it is effective in the low-data regime encountered early on in training RL agents. Combining the IB with SNI, we significantly outperform current state of the art results, including on the recently proposed generalization benchmark Coinrun.

Author Information

Max Igl (University of Oxford)
Kamil Ciosek (Microsoft)
Yingzhen Li (Microsoft Research Cambridge)
Sebastian Tschiatschek (Microsoft Research)
Cheng Zhang (Microsoft Research, Cambridge, UK)
Sam Devlin (Microsoft Research)
Katja Hofmann (Microsoft Research)

Dr. Katja Hofmann is a Principal Researcher at the [Game Intelligence](http://aka.ms/gameintelligence/) group at [Microsoft Research Cambridge, UK](https://www.microsoft.com/en-us/research/lab/microsoft-research-cambridge/). There, she leads a research team that focuses on reinforcement learning with applications in modern video games. She and her team strongly believe that modern video games will drive a transformation of how we interact with AI technology. One of the projects developed by her team is [Project Malmo](https://www.microsoft.com/en-us/research/project/project-malmo/), which uses the popular game Minecraft as an experimentation platform for developing intelligent technology. Katja's long-term goal is to develop AI systems that learn to collaborate with people, to empower their users and help solve complex real-world problems. Before joining Microsoft Research, Katja completed her PhD in Computer Science as part of the [ILPS](https://ilps.science.uva.nl/) group at the [University of Amsterdam](https://www.uva.nl/en). She worked with Maarten de Rijke and Shimon Whiteson on interactive machine learning algorithms for search engines.

More from the Same Authors