Timezone: »
Current state-of-the-art approximate nearest neighbor search (ANNS) algorithms generate indices that must be stored in main memory for fast high-recall search. This makes them expensive and limits the size of the dataset. We present a new graph-based indexing and search system called DiskANN that can index, store, and search a billion point database on a single workstation with just 64GB RAM and an inexpensive solid-state drive (SSD). Contrary to current wisdom, we demonstrate that the SSD-based indices built by DiskANN can meet all three desiderata for large-scale ANNS: high-recall, low query latency and high density (points indexed per node). On the billion point SIFT1B bigann dataset, DiskANN serves > 5000 queries a second with < 3ms mean latency and 95%+ 1-recall@1 on a 16 core machine, where state-of-the-art billion-point ANNS algorithms with similar memory footprint like FAISS and IVFOADC+G+P plateau at around 50% 1-recall@1. Alternately, in the high recall regime, DiskANN can index and serve 5 − 10x more points per node compared to state-of-the-art graph- based methods such as HNSW and NSG. Finally, as part of our overall DiskANN system, we introduce Vamana, a new graph-based ANNS index that is more versatile than the graph indices even for in-memory indices.
Author Information
Suhas Jayaram Subramanya (Carnegie Mellon University)
Fnu Devvrit (University of Texas at Austin)
Hi. I am Devvrit, a second year PhD student at UT Austin. I'm broadly interested in large scale machine learning, deep learning, and optimization. In my free time, I play badminton and look for adventure sports.
Harsha Vardhan Simhadri (Microsoft Research)
Ravishankar Krishnawamy (Microsoft Research India)
Rohan Kadekodi (The University of Texas at Austin)
More from the Same Authors
-
2022 Poster: S3GC: Scalable Self-Supervised Graph Clustering »
Fnu Devvrit · Aditya Sinha · Inderjit Dhillon · Prateek Jain -
2022 Poster: Semi-supervised Active Linear Regression »
Nived Rajaraman · Fnu Devvrit · Pranjal Awasthi -
2021 : Billion-Scale Approximate Nearest Neighbor Search Challenge + Q&A »
Harsha Vardhan Simhadri · George Williams · Martin Aumüller · Artem Babenko · Dmitry Baranchuk · Qi Chen · Matthijs Douze · Ravishankar Krishnawamy · Gopal Srinivasa · Suhas Jayaram Subramanya · Jingdong Wang -
2020 Poster: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Spotlight: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2019 Poster: Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices »
Don Dennis · Durmus Alp Emre Acar · Vikram Mandikal · Vinu Sankar Sadasivan · Venkatesh Saligrama · Harsha Vardhan Simhadri · Prateek Jain -
2018 Poster: Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices »
Don Dennis · Chirag Pabbaraju · Harsha Vardhan Simhadri · Prateek Jain