Timezone: »
State-of-the-art approaches to causal discovery usually assume a fixed underlying causal model. However, it is often the case that causal models vary across domains or subjects, due to possibly omitted factors that affect the quantitative causal effects. As a typical example, causal connectivity in the brain network has been reported to vary across individuals, with significant differences across groups of people, such as autistics and typical controls. In this paper, we develop a unified framework for causal discovery and mechanism-based group identification. In particular, we propose a specific and shared causal model (SSCM), which takes into account the variabilities of causal relations across individuals/groups and leverages their commonalities to achieve statistically reliable estimation. The learned SSCM gives the specific causal knowledge for each individual as well as the general trend over the population. In addition, the estimated model directly provides the group information of each individual. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed method.
Author Information
Biwei Huang (Carnegie Mellon University)
Kun Zhang (CMU)
Pengtao Xie (Petuum / CMU)
Mingming Gong (University of Melbourne)
Eric Xing (Petuum Inc.)
Clark Glymour (Carnegie Mellon University)
More from the Same Authors
-
2021 : Geometric Question Answering Towards Multimodal Numerical Reasoning »
Jiaqi Chen · Jianheng Tang · Jinghui Qin · Xiaodan Liang · Lingbo Liu · Eric Xing · Liang Lin -
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : The Impact of Symbolic Representations on In-context Learning for Few-shot Reasoning »
Hanlin Zhang · yifan zhang · Li Erran Li · Eric Xing -
2022 : Scalable Causal Discovery with Score Matching »
Francesco Montagna · Nicoletta Noceti · Lorenzo Rosasco · Kun Zhang · Francesco Locatello -
2022 : Betty: An Automatic Differentiation Library for Multilevel Optimization »
Sang Keun Choe · Willie Neiswanger · Pengtao Xie · Eric Xing -
2022 Spotlight: Masked Generative Adversarial Networks are Data-Efficient Generation Learners »
Jiaxing Huang · Kaiwen Cui · Dayan Guan · Aoran Xiao · Fangneng Zhan · Shijian Lu · Shengcai Liao · Eric Xing -
2022 Spotlight: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 : Causal Discovery from Nonstationary Time Series - Biwei Huang »
Biwei Huang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 Poster: On the Identifiability of Nonlinear ICA: Sparsity and Beyond »
Yujia Zheng · Ignavier Ng · Kun Zhang -
2022 Poster: Independence Testing-Based Approach to Causal Discovery under Measurement Error and Linear Non-Gaussian Models »
Haoyue Dai · Peter Spirtes · Kun Zhang -
2022 Poster: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: AMP: Automatically Finding Model Parallel Strategies with Heterogeneity Awareness »
Dacheng Li · Hongyi Wang · Eric Xing · Hao Zhang -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Unsupervised Image-to-Image Translation with Density Changing Regularization »
Shaoan Xie · Qirong Ho · Kun Zhang -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Rare Gems: Finding Lottery Tickets at Initialization »
Kartik Sreenivasan · Jy-yong Sohn · Liu Yang · Matthew Grinde · Alliot Nagle · Hongyi Wang · Eric Xing · Kangwook Lee · Dimitris Papailiopoulos -
2022 Poster: Temporally Disentangled Representation Learning »
Weiran Yao · Guangyi Chen · Kun Zhang -
2022 Poster: Truncated Matrix Power Iteration for Differentiable DAG Learning »
Zhen Zhang · Ignavier Ng · Dong Gong · Yuhang Liu · Ehsan Abbasnejad · Mingming Gong · Kun Zhang · Javen Qinfeng Shi -
2022 Poster: Masked Generative Adversarial Networks are Data-Efficient Generation Learners »
Jiaxing Huang · Kaiwen Cui · Dayan Guan · Aoran Xiao · Fangneng Zhan · Shijian Lu · Shengcai Liao · Eric Xing -
2021 Poster: Domain Adaptation with Invariant Representation Learning: What Transformations to Learn? »
Petar Stojanov · Zijian Li · Mingming Gong · Ruichu Cai · Jaime Carbonell · Kun Zhang -
2021 Poster: Identification of Partially Observed Linear Causal Models: Graphical Conditions for the Non-Gaussian and Heterogeneous Cases »
Jeffrey Adams · Niels Hansen · Kun Zhang -
2021 Poster: Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions »
Ignavier Ng · Yujia Zheng · Jiji Zhang · Kun Zhang -
2021 Poster: Instance-dependent Label-noise Learning under a Structural Causal Model »
Yu Yao · Tongliang Liu · Mingming Gong · Bo Han · Gang Niu · Kun Zhang -
2020 : Keynotes: Clark Glymour »
Clark Glymour -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: On the Role of Sparsity and DAG Constraints for Learning Linear DAGs »
Ignavier Ng · AmirEmad Ghassami · Kun Zhang -
2020 Session: Orals & Spotlights Track 27: Unsupervised/Probabilistic »
Marina Meila · Kun Zhang -
2020 Poster: A Causal View on Robustness of Neural Networks »
Cheng Zhang · Kun Zhang · Yingzhen Li -
2020 Poster: How do fair decisions fare in long-term qualification? »
Xueru Zhang · Ruibo Tu · Yang Liu · Mingyan Liu · Hedvig Kjellstrom · Kun Zhang · Cheng Zhang -
2020 Poster: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Spotlight: Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs »
Feng Xie · Ruichu Cai · Biwei Huang · Clark Glymour · Zhifeng Hao · Kun Zhang -
2020 Poster: Domain Adaptation as a Problem of Inference on Graphical Models »
Kun Zhang · Mingming Gong · Petar Stojanov · Biwei Huang · QINGSONG LIU · Clark Glymour -
2019 Poster: Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation »
Ruibo Tu · Kun Zhang · Bo Bertilson · Hedvig Kjellstrom · Cheng Zhang -
2019 Poster: Triad Constraints for Learning Causal Structure of Latent Variables »
Ruichu Cai · Feng Xie · Clark Glymour · Zhifeng Hao · Kun Zhang -
2019 Poster: Twin Auxilary Classifiers GAN »
Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich -
2019 Spotlight: Twin Auxilary Classifiers GAN »
Mingming Gong · Yanwu Xu · Chunyuan Li · Kun Zhang · Kayhan Batmanghelich -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Multi-domain Causal Structure Learning in Linear Systems »
AmirEmad Ghassami · Negar Kiyavash · Biwei Huang · Kun Zhang -
2018 Poster: Causal Discovery from Discrete Data using Hidden Compact Representation »
Ruichu Cai · Jie Qiao · Kun Zhang · Zhenjie Zhang · Zhifeng Hao -
2018 Poster: Modeling Dynamic Missingness of Implicit Feedback for Recommendation »
Menghan Wang · Mingming Gong · Xiaolin Zheng · Kun Zhang -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang -
2008 Poster: Integrating Locally Learned Causal Structures with Overlapping Variables »
Robert E Tillman · David Danks · Clark Glymour