Timezone: »
Causal inference in randomized experiments typically assumes that the units of randomization and the units of analysis are one and the same. In some applications, however, these two roles are played by distinct entities linked by a bipartite graph. The key challenge in such bipartite settings is how to avoid interference bias, which would typically arise if we simply randomized the treatment at the level of analysis units. One effective way of minimizing interference bias in standard experiments is through cluster randomization, but this design has not been studied in the bipartite setting where conventional clustering schemes can lead to poorly powered experiments. This paper introduces a novel clustering objective and a corresponding algorithm that partitions a bipartite graph so as to maximize the statistical power of a bipartite experiment on that graph. Whereas previous work relied on balanced partitioning, our formulation suggests the use of a correlation clustering objective. We use a publicly-available graph of Amazon user-item reviews to validate our solution and illustrate how it substantially increases the statistical power in bipartite experiments.
Author Information
Jean Pouget-Abadie (Google)
Kevin Aydin (Google)
Warren Schudy (Google)
Kay Brodersen (Google)
Vahab Mirrokni (Google Research NYC)
More from the Same Authors
-
2022 Poster: Stars: Tera-Scale Graph Building for Clustering and Learning »
CJ Carey · Jonathan Halcrow · Rajesh Jayaram · Vahab Mirrokni · Warren Schudy · Peilin Zhong -
2022 Poster: Cluster Randomized Designs for One-Sided Bipartite Experiments »
Jennifer Brennan · Vahab Mirrokni · Jean Pouget-Abadie -
2021 Poster: Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient »
David Applegate · Mateo Diaz · Oliver Hinder · Haihao Lu · Miles Lubin · Brendan O'Donoghue · Warren Schudy -
2021 Poster: Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls »
Nick Doudchenko · Khashayar Khosravi · Jean Pouget-Abadie · Sébastien Lahaie · Miles Lubin · Vahab Mirrokni · Jann Spiess · guido imbens -
2020 Poster: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Spotlight: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Poster: Smoothly Bounding User Contributions in Differential Privacy »
Alessandro Epasto · Mohammad Mahdian · Jieming Mao · Vahab Mirrokni · Lijie Ren -
2020 Poster: Contextual Reserve Price Optimization in Auctions via Mixed Integer Programming »
Joey Huchette · Haihao Lu · Hossein Esfandiari · Vahab Mirrokni -
2020 : Clustering At Scale »
Vahab Mirrokni -
2020 : Application Story: Experimental Design »
Jean Pouget-Abadie -
2020 Expo Workshop: Mining and Learning with Graphs at Scale »
Vahab Mirrokni · Bryan Perozzi · Jakub Lacki · Jonathan Halcrow · Jaqui C Herman -
2020 : Introduction »
Vahab Mirrokni -
2019 : Coffee break, posters, and 1-on-1 discussions »
Yangyi Lu · Daniel Chen · Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Julius von Kügelgen · Niranjani Prasad · Paramveer Dhillon · Yunzong Xu · Yixin Wang · Alexander Markham · David Rohde · Rahul Singh · Zichen Zhang · Negar Hassanpour · Ankit Sharma · Ciarán Lee · Jean Pouget-Abadie · Jesse Krijthe · Divyat Mahajan · Nan Rosemary Ke · Peter Wirnsberger · Vira Semenova · Dmytro Mykhaylov · Dennis Shen · Kenta Takatsu · Liyang Sun · Jeremy Yang · Alexander Franks · Pak Kan Wong · Tauhid Zaman · Shira Mitchell · min kyoung kang · Qi Yang -
2019 Poster: Contextual Bandits with Cross-Learning »
Santiago Balseiro · Negin Golrezaei · Mohammad Mahdian · Vahab Mirrokni · Jon Schneider -
2019 Poster: Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions »
Negin Golrezaei · Adel Javanmard · Vahab Mirrokni -
2019 Poster: A Robust Non-Clairvoyant Dynamic Mechanism for Contextual Auctions »
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni -
2019 Poster: Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and Beyond »
Lin Chen · Hossein Esfandiari · Gang Fu · Vahab Mirrokni -
2017 Poster: Dynamic Revenue Sharing »
Santiago Balseiro · Max Lin · Vahab Mirrokni · Renato Leme · IIIS Song Zuo -
2017 Poster: Affinity Clustering: Hierarchical Clustering at Scale »
Mohammadhossein Bateni · Soheil Behnezhad · Mahsa Derakhshan · MohammadTaghi Hajiaghayi · Raimondas Kiveris · Silvio Lattanzi · Vahab Mirrokni -
2016 Poster: Bi-Objective Online Matching and Submodular Allocations »
Hossein Esfandiari · Nitish Korula · Vahab Mirrokni -
2016 Poster: Linear Relaxations for Finding Diverse Elements in Metric Spaces »
Aditya Bhaskara · Mehrdad Ghadiri · Vahab Mirrokni · Ola Svensson -
2014 Poster: Generative Adversarial Nets »
Ian Goodfellow · Jean Pouget-Abadie · Mehdi Mirza · Bing Xu · David Warde-Farley · Sherjil Ozair · Aaron Courville · Yoshua Bengio -
2014 Poster: Distributed Balanced Clustering via Mapping Coresets »
Mohammadhossein Bateni · Aditya Bhaskara · Silvio Lattanzi · Vahab Mirrokni