Timezone: »
Achieving robustness to distributional shift is a longstanding and challenging goal of computer vision. Data augmentation is a commonly used approach for improving robustness, however robustness gains are typically not uniform across corruption types. Indeed increasing performance in the presence of random noise is often met with reduced performance on other corruptions such as contrast change. Understanding when and why these sorts of trade-offs occur is a crucial step towards mitigating them. Towards this end, we investigate recently observed trade-offs caused by Gaussian data augmentation and adversarial training. We find that both methods improve robustness to corruptions that are concentrated in the high frequency domain while reducing robustness to corruptions that are concentrated in the low frequency domain. This suggests that one way to mitigate these trade-offs via data augmentation is to use a more diverse set of augmentations. Towards this end we observe that AutoAugment, a recently proposed data augmentation policy optimized for clean accuracy, achieves state-of-the-art robustness on the CIFAR-10-C benchmark.
Author Information
Dong Yin (UC Berkeley)
Raphael Gontijo Lopes (Google Brain)
Jonathon Shlens (Google Research)
Ekin Dogus Cubuk (Google Brain)
Justin Gilmer (Google Brain)
More from the Same Authors
-
2020 : End-to-End Differentiability and Tensor Processing Unit Computing to Accelerate Materials’ Inverse Design »
HAN LIU · Yuhan Liu · Zhangji Zhao · Samuel Schoenholz · Ekin Dogus Cubuk · Mathieu Bauchy -
2021 Spotlight: Revisiting ResNets: Improved Training and Scaling Strategies »
Irwan Bello · William Fedus · Xianzhi Du · Ekin Dogus Cubuk · Aravind Srinivas · Tsung-Yi Lin · Jonathon Shlens · Barret Zoph -
2022 : Do Current Multi-Task Optimization Methods in Deep Learning Even Help? »
Derrick Xin · Behrooz Ghorbani · Dami Choi · Ankush Garg · Orhan Firat · Justin Gilmer -
2023 Poster: Order Matters in the Presence of Dataset Imbalance for Multilingual Learning »
Dami Choi · Derrick Xin · Justin Gilmer · Hamid Dadkhahi · Ankush Garg · Orhan Firat · Chih-Kuan Yeh · Andrew Dai · Behrooz Ghorbani -
2022 : Invited talk: E. Doğuş Çubuk, "Scaling up material discovery via deep learning" »
Ekin Dogus Cubuk · Siddharth Mishra-Sharma -
2022 Poster: When does dough become a bagel? Analyzing the remaining mistakes on ImageNet »
Vijay Vasudevan · Benjamin Caine · Raphael Gontijo Lopes · Sara Fridovich-Keil · Rebecca Roelofs -
2022 Poster: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding »
Chitwan Saharia · William Chan · Saurabh Saxena · Lala Li · Jay Whang · Remi Denton · Kamyar Ghasemipour · Raphael Gontijo Lopes · Burcu Karagol Ayan · Tim Salimans · Jonathan Ho · David Fleet · Mohammad Norouzi -
2022 Poster: Do Current Multi-Task Optimization Methods in Deep Learning Even Help? »
Derrick Xin · Behrooz Ghorbani · Justin Gilmer · Ankush Garg · Orhan Firat -
2022 Poster: Spectral Bias in Practice: The Role of Function Frequency in Generalization »
Sara Fridovich-Keil · Raphael Gontijo Lopes · Rebecca Roelofs -
2021 Poster: Revisiting ResNets: Improved Training and Scaling Strategies »
Irwan Bello · William Fedus · Xianzhi Du · Ekin Dogus Cubuk · Aravind Srinivas · Tsung-Yi Lin · Jonathon Shlens · Barret Zoph -
2020 Workshop: Resistance AI Workshop »
Suzanne Kite · Mattie Tesfaldet · J Khadijah Abdurahman · William Agnew · Elliot Creager · Agata Foryciarz · Raphael Gontijo Lopes · Pratyusha Kalluri · Marie-Therese Png · Manuel Sabin · Maria Skoularidou · Ramon Vilarino · Rose Wang · Sayash Kapoor · Micah Carroll -
2020 Poster: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence »
Kihyuk Sohn · David Berthelot · Nicholas Carlini · Zizhao Zhang · Han Zhang · Colin A Raffel · Ekin Dogus Cubuk · Alexey Kurakin · Chun-Liang Li -
2020 Poster: RandAugment: Practical Automated Data Augmentation with a Reduced Search Space »
Ekin Dogus Cubuk · Barret Zoph · Jonathon Shlens · Quoc V Le -
2020 Poster: JAX MD: A Framework for Differentiable Physics »
Samuel Schoenholz · Ekin Dogus Cubuk -
2020 Spotlight: JAX MD: A Framework for Differentiable Physics »
Samuel Schoenholz · Ekin Dogus Cubuk -
2020 Poster: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Oral: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Affinity Workshop: Queer in AI Workshop @ NeurIPS 2020 »
Raphael Gontijo Lopes · Luke Stark · Melvin Selim Atay · ST John -
2019 Poster: Stand-Alone Self-Attention in Vision Models »
Niki Parmar · Prajit Ramachandran · Ashish Vaswani · Irwan Bello · Anselm Levskaya · Jonathon Shlens -
2018 Poster: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms »
Avital Oliver · Augustus Odena · Colin A Raffel · Ekin Dogus Cubuk · Ian Goodfellow -
2018 Spotlight: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms »
Avital Oliver · Augustus Odena · Colin A Raffel · Ekin Dogus Cubuk · Ian Goodfellow -
2018 Poster: Sanity Checks for Saliency Maps »
Julius Adebayo · Justin Gilmer · Michael Muelly · Ian Goodfellow · Moritz Hardt · Been Kim -
2018 Spotlight: Sanity Checks for Saliency Maps »
Julius Adebayo · Justin Gilmer · Michael Muelly · Ian Goodfellow · Moritz Hardt · Been Kim -
2018 Poster: Searching for Efficient Multi-Scale Architectures for Dense Image Prediction »
Liang-Chieh Chen · Maxwell Collins · Yukun Zhu · George Papandreou · Barret Zoph · Florian Schroff · Hartwig Adam · Jonathon Shlens -
2017 : Adversarial Patch »
Justin Gilmer -
2017 : Poster Session »
Tsz Kit Lau · Johannes Maly · Nicolas Loizou · Christian Kroer · Yuan Yao · Youngsuk Park · Reka Agnes Kovacs · Dong Yin · Vlad Zhukov · Woosang Lim · David Barmherzig · Dimitris Metaxas · Bin Shi · Rajan Udwani · William Brendel · Yi Zhou · Vladimir Braverman · Sijia Liu · Eugene Golikov -
2017 Poster: SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability »
Maithra Raghu · Justin Gilmer · Jason Yosinski · Jascha Sohl-Dickstein -
2013 Poster: DeViSE: A Deep Visual-Semantic Embedding Model »
Andrea Frome · Greg Corrado · Jonathon Shlens · Samy Bengio · Jeff Dean · Marc'Aurelio Ranzato · Tomas Mikolov -
2013 Demonstration: DeViSE: A Deep Visual-Semantic Embedding Model »
Jonathon Shlens · Andrea Frome