Timezone: »
In the context of multi-player, general-sum games, there is a growing interest in solution concepts involving some form of communication among players, since they can lead to socially better outcomes with respect to Nash equilibria and may be reached through learning dynamics in a decentralized fashion. In this paper, we focus on coarse correlated equilibria (CCEs) in sequential games. First, we complete the picture on the complexity of finding social-welfare-maximizing CCEs by proving that the problem is not in Poly-APX, unless P = NP, in games with three or more players (including chance). Then, we provide simple arguments showing that CFR---working with behavioral strategies---may not converge to a CCE in multi-player, general-sum sequential games. In order to amend this issue, we devise two variants of CFR that provably converge to a CCE. The first one (CFR-S) is a simple stochastic adaptation of CFR which employs sampling to build a correlated strategy, whereas the second variant (called CFR-Jr) enhances CFR with a more involved reconstruction procedure to recover correlated strategies from behavioral ones. Experiments on a rich testbed of multi-player, general-sum sequential games show that both CFR-S and CFR-Jr are dramatically faster than the state-of-the-art algorithms to compute CCEs, with CFR-Jr being also a good heuristic to find socially-optimal CCEs.
Author Information
Andrea Celli (Politecnico di Milano)
Alberto Marchesi (Politecnico di Milano)
Tommaso Bianchi (Politecnico di Milano)
Nicola Gatti (Politecnico di Milano)
More from the Same Authors
-
2021 : The Evolutionary Dynamics of Soft-Max PolicyGradient in Multi-Agent Settings »
Martino Bernasconi · Federico Cacciamani · Simone Fioravanti · Nicola Gatti · Francesco Trovò -
2021 : Public Information Representation for Adversarial Team Games »
Luca Carminati · Federico Cacciamani · Marco Ciccone · Nicola Gatti -
2022 : Multi-Armed Bandit Problem with Temporally-Partitioned Rewards »
Giulia Romano · Andrea Agostini · Francesco Trovò · Nicola Gatti · Marcello Restelli -
2022 : A General Framework for Safe Decision Making: A Convex Duality Approach »
Martino Bernasconi · Federico Cacciamani · Nicola Gatti · Francesco Trovò -
2022 : A Unifying Framework for Online Safe Optimization »
Matteo Castiglioni · Andrea Celli · Alberto Marchesi · Giulia Romano · Nicola Gatti -
2022 Poster: Sequential Information Design: Learning to Persuade in the Dark »
Martino Bernasconi · Matteo Castiglioni · Alberto Marchesi · Nicola Gatti · Francesco Trovò -
2022 Poster: A Unifying Framework for Online Optimization with Long-Term Constraints »
Matteo Castiglioni · Andrea Celli · Alberto Marchesi · Giulia Romano · Nicola Gatti -
2022 Poster: Subgame Solving in Adversarial Team Games »
Brian Zhang · Luca Carminati · Federico Cacciamani · Gabriele Farina · Pierriccardo Olivieri · Nicola Gatti · Tuomas Sandholm -
2021 : Spotlight Talk: Public Information Representation for Adversarial Team Games »
Luca Carminati · Federico Cacciamani · Marco Ciccone · Nicola Gatti -
2021 Poster: Exploiting Opponents Under Utility Constraints in Sequential Games »
Martino Bernasconi · Federico Cacciamani · Simone Fioravanti · Nicola Gatti · Alberto Marchesi · Francesco Trovò -
2020 Poster: Online Bayesian Persuasion »
Matteo Castiglioni · Andrea Celli · Alberto Marchesi · Nicola Gatti -
2020 Poster: No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium »
Andrea Celli · Alberto Marchesi · Gabriele Farina · Nicola Gatti -
2020 Spotlight: Online Bayesian Persuasion »
Matteo Castiglioni · Andrea Celli · Alberto Marchesi · Nicola Gatti -
2020 Oral: No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium »
Andrea Celli · Alberto Marchesi · Gabriele Farina · Nicola Gatti -
2018 Poster: Practical exact algorithm for trembling-hand equilibrium refinements in games »
Gabriele Farina · Nicola Gatti · Tuomas Sandholm -
2018 Poster: Ex ante coordination and collusion in zero-sum multi-player extensive-form games »
Gabriele Farina · Andrea Celli · Nicola Gatti · Tuomas Sandholm