Timezone: »
Poster
Provably robust boosted decision stumps and trees against adversarial attacks
Maksym Andriushchenko · Matthias Hein
Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #23
The problem of adversarial robustness has been studied extensively for neural networks. However, for boosted decision trees and decision stumps there are almost no results, even though they are widely used in practice (e.g. XGBoost) due to their accuracy, interpretability, and efficiency. We show in this paper that for boosted decision stumps the \textit{exact} min-max robust loss and test error for an $l_\infty$-attack can be computed in $O(T\log T)$ time per input, where $T$ is the number of decision stumps and the optimal update step of the ensemble can be done in $O(n^2\,T\log T)$, where $n$ is the number of data points. For boosted trees we show how to efficiently calculate and optimize an upper bound on the robust loss, which leads to state-of-the-art robust test error for boosted trees on MNIST (12.5\% for $\epsilon_\infty=0.3$), FMNIST (23.2\% for $\epsilon_\infty=0.1$), and CIFAR-10 (74.7\% for $\epsilon_\infty=8/255$). Moreover, the robust test error rates we achieve are competitive to the ones of provably robust convolutional networks. The code of all our experiments is available at \url{http://github.com/max-andr/provably-robust-boosting}.
Author Information
Maksym Andriushchenko (University of Tübingen / EPFL)
Matthias Hein (University of Tübingen)
More from the Same Authors
-
2021 : RobustBench: a standardized adversarial robustness benchmark »
Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein -
2022 : Perturbing BatchNorm and Only BatchNorm Benefits Sharpness-Aware Minimization »
Maximilian Mueller · Matthias Hein -
2022 : Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation »
Maksym Yatsura · Kaspar Sakmann · N. Grace Hua · Matthias Hein · Jan Hendrik Metzen -
2022 Poster: Diffusion Visual Counterfactual Explanations »
Maximilian Augustin · Valentyn Boreiko · Francesco Croce · Matthias Hein -
2022 Poster: Provably Adversarially Robust Detection of Out-of-Distribution Data (Almost) for Free »
Alexander Meinke · Julian Bitterwolf · Matthias Hein -
2020 Poster: Certifiably Adversarially Robust Detection of Out-of-Distribution Data »
Julian Bitterwolf · Alexander Meinke · Matthias Hein -
2020 Poster: Understanding and Improving Fast Adversarial Training »
Maksym Andriushchenko · Nicolas Flammarion -
2019 : Maksym Andriushchenko, "Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks" »
Maksym Andriushchenko -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs »
Pedro Mercado · Francesco Tudisco · Matthias Hein -
2017 Poster: Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation »
Matthias Hein · Maksym Andriushchenko