Timezone: »
In this paper, we propose a novel implicit semantic data augmentation (ISDA) approach to complement traditional augmentation techniques like flipping, translation or rotation. Our work is motivated by the intriguing property that deep networks are surprisingly good at linearizing features, such that certain directions in the deep feature space correspond to meaningful semantic transformations, e.g., adding sunglasses or changing backgrounds. As a consequence, translating training samples along many semantic directions in the feature space can effectively augment the dataset to improve generalization. To implement this idea effectively and efficiently, we first perform an online estimate of the covariance matrix of deep features for each class, which captures the intra-class semantic variations. Then random vectors are drawn from a zero-mean normal distribution with the estimated covariance to augment the training data in that class. Importantly, instead of augmenting the samples explicitly, we can directly minimize an upper bound of the expected cross-entropy (CE) loss on the augmented training set, leading to a highly efficient algorithm. In fact, we show that the proposed ISDA amounts to minimizing a novel robust CE loss, which adds negligible extra computational cost to a normal training procedure. Although being simple, ISDA consistently improves the generalization performance of popular deep models (ResNets and DenseNets) on a variety of datasets, e.g., CIFAR-10, CIFAR-100 and ImageNet. Code for reproducing our results are available at https://github.com/blackfeather-wang/ISDA-for-Deep-Networks.
Author Information
Yulin Wang (Tsinghua University)
Xuran Pan (Tsinghua University)
Shiji Song (Department of Automation, Tsinghua University)
Hong Zhang (Baidu Inc.)
Gao Huang (Tsinghua)
Cheng Wu (Tsinghua)
More from the Same Authors
-
2021 Spotlight: Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning »
Yiqin Yang · Xiaoteng Ma · Chenghao Li · Zewu Zheng · Qiyuan Zhang · Gao Huang · Jun Yang · Qianchuan Zhao -
2022 Poster: Contrastive Language-Image Pre-Training with Knowledge Graphs »
Xuran Pan · Tianzhu Ye · Dongchen Han · Shiji Song · Gao Huang -
2022 Poster: Efficient Knowledge Distillation from Model Checkpoints »
Chaofei Wang · Qisen Yang · Rui Huang · Shiji Song · Gao Huang -
2022 Spotlight: Lightning Talks 1B-3 »
Chaofei Wang · Qixun Wang · Jing Xu · Long-Kai Huang · Xi Weng · Fei Ye · Harsh Rangwani · shrinivas ramasubramanian · Yifei Wang · Qisen Yang · Xu Luo · Lei Huang · Adrian G. Bors · Ying Wei · Xinglin Pan · Sho Takemori · Hong Zhu · Rui Huang · Lei Zhao · Yisen Wang · Kato Takashi · Shiji Song · Yanan Li · Rao Anwer · Yuhei Umeda · Salman Khan · Gao Huang · Wenjie Pei · Fahad Shahbaz Khan · Venkatesh Babu R · Zenglin Xu -
2022 Spotlight: Efficient Knowledge Distillation from Model Checkpoints »
Chaofei Wang · Qisen Yang · Rui Huang · Shiji Song · Gao Huang -
2022 Poster: Latency-aware Spatial-wise Dynamic Networks »
Yizeng Han · Zhihang Yuan · Yifan Pu · Chenhao Xue · Shiji Song · Guangyu Sun · Gao Huang -
2021 Poster: Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning »
Yiqin Yang · Xiaoteng Ma · Chenghao Li · Zewu Zheng · Qiyuan Zhang · Gao Huang · Jun Yang · Qianchuan Zhao -
2021 Poster: Searching Parameterized AP Loss for Object Detection »
Tao Chenxin · Zizhang Li · Xizhou Zhu · Gao Huang · Yong Liu · jifeng dai -
2021 Poster: Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition »
Yulin Wang · Rui Huang · Shiji Song · Zeyi Huang · Gao Huang -
2020 Poster: Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification »
Yulin Wang · Kangchen Lv · Rui Huang · Shiji Song · Le Yang · Gao Huang -
2019 Poster: Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning »
Wenjie Shi · Shiji Song · Hui Wu · Ya-Chu Hsu · Cheng Wu · Gao Huang -
2019 Poster: Asymmetric Valleys: Beyond Sharp and Flat Local Minima »
Haowei He · Gao Huang · Yang Yuan -
2019 Spotlight: Asymmetric Valleys: Beyond Sharp and Flat Local Minima »
Haowei He · Gao Huang · Yang Yuan