Timezone: »
The Variational Auto-Encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficiently embed tree-like structures. Hyperbolic spaces with negative curvature can. We therefore endow VAEs with a Poincaré ball model of hyperbolic geometry as a latent space and rigorously derive the necessary methods to work with two main Gaussian generalisations on that space. We empirically show better generalisation to unseen data than the Euclidean counterpart, and can qualitatively and quantitatively better recover hierarchical structures.
Author Information
Emile Mathieu (University of Oxford)
Charline Le Lan (University of Oxford)
Chris Maddison (Institute for Advanced Study, Princeton)
Ryota Tomioka (Microsoft Research Cambridge)
Yee Whye Teh (University of Oxford, DeepMind)
I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.
More from the Same Authors
-
2021 Spotlight: Lossy Compression for Lossless Prediction »
Yann Dubois · Benjamin Bloem-Reddy · Karen Ullrich · Chris Maddison -
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2021 : Optimal Representations for Covariate Shifts »
Yann Dubois · Yangjun Ruan · Chris Maddison -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Bobby He · Francisca Vasconcelos · Yee Whye Teh -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : Spectral Diffusion Processes »
Angus Phillips · Thomas Seror · Michael Hutchinson · Valentin De Bortoli · Arnaud Doucet · Emile Mathieu -
2022 : When Does Re-initialization Work? »
Sheheryar Zaidi · Tudor Berariu · Hyunjik Kim · Jorg Bornschein · Claudia Clopath · Yee Whye Teh · Razvan Pascanu -
2023 Poster: Metropolis Sampling for Constrained Diffusion Models »
Nic Fishman · Leo Klarner · Emile Mathieu · Michael Hutchinson · Valentin De Bortoli -
2023 Poster: Probabilistic Invariant Learning with Randomized Linear Classifiers »
Leonardo Cotta · Gal Yehuda · Assaf Schuster · Chris Maddison -
2023 Poster: Shaped Attention Mechanism in the Infinite Depth-and-Width Limit at Initialization »
Lorenzo Noci · Chuning Li · Mufan Li · Bobby He · Thomas Hofmann · Chris Maddison · Dan Roy -
2023 Poster: Geometric Neural Diffusion Processes »
Emile Mathieu · Vincent Dutordoir · Michael Hutchinson · Valentin De Bortoli · Yee Whye Teh · Richard Turner -
2023 Poster: Deep Stochastic Processes via Functional Markov Transition Operators »
Jin Xu · Emilien Dupont · Kaspar Märtens · Thomas Rainforth · Yee Whye Teh -
2023 Poster: SE(3) Equivariant Augmented Coupling Flows »
Laurence Midgley · Vincent Stimper · Javier Antorán · Emile Mathieu · Bernhard Schölkopf · José Miguel Hernández-Lobato -
2023 Poster: Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics »
Leon Klein · Andrew Foong · Tor Fjelde · Bruno Mlodozeniec · Marc Brockschmidt · Sebastian Nowozin · Frank Noe · Ryota Tomioka -
2023 Poster: MeGraph: Capturing Long-Range Interactions by Alternating Local and Hierarchical Aggregation on Multi-Scaled Graph Hierarchy »
Honghua Dong · Jiawei Xu · Yu Yang · Rui Zhao · Shiwen Wu · Chun Yuan · Xiu Li · Chris Maddison · Lei Han -
2023 Poster: Synthetic Experience Replay »
Cong Lu · Philip Ball · Yee Whye Teh · Jack Parker-Holder -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Riemannian Score-Based Generative Modelling »
Valentin De Bortoli · Emile Mathieu · Michael Hutchinson · James Thornton · Yee Whye Teh · Arnaud Doucet -
2021 : Invited Talk 6 »
Chris Maddison -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: An Information-theoretic Approach to Distribution Shifts »
Marco Federici · Ryota Tomioka · Patrick Forré -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: Lossy Compression for Lossless Prediction »
Yann Dubois · Benjamin Bloem-Reddy · Karen Ullrich · Chris Maddison -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2020 : Charline Le Lan---Perfect density models cannot guarantee anomaly detection »
Charline Le Lan -
2020 : Poster Session 2 on Gather.Town »
Charline Le Lan · Emile Mathieu -
2020 : Panel Discussion »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton -
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Riemannian Continuous Normalizing Flows »
Emile Mathieu · Maximilian Nickel -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them »
Chen Liu · Mathieu Salzmann · Tao Lin · Ryota Tomioka · Sabine Süsstrunk -
2020 Poster: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Poster: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Spotlight: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Oral: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Contributed Talk - Towards deep amortized clustering »
Juho Lee · Yoonho Lee · Yee Whye Teh -
2019 Poster: Stacked Capsule Autoencoders »
Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton -
2019 Poster: Continual Unsupervised Representation Learning »
Dushyant Rao · Francesco Visin · Andrei A Rusu · Razvan Pascanu · Yee Whye Teh · Raia Hadsell -
2019 Poster: Hamiltonian descent for composite objectives »
Brendan O'Donoghue · Chris Maddison -
2019 Poster: Random Tessellation Forests »
Shufei Ge · Shijia Wang · Yee Whye Teh · Liangliang Wang · Lloyd Elliott -
2019 Poster: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Spotlight: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Poster: Augmented Neural ODEs »
Emilien Dupont · Arnaud Doucet · Yee Whye Teh -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Workshop: Continual Learning »
Razvan Pascanu · Yee Teh · Marc Pickett · Mark Ring -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Stochastic Expectation Maximization with Variance Reduction »
Jianfei Chen · Jun Zhu · Yee Whye Teh · Tong Zhang -
2018 Poster: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Spotlight: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Poster: Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data »
Xenia Miscouridou · Francois Caron · Yee Whye Teh -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Invited Talk: On Bayesian Deep Learning and Deep Bayesian Learning »
Yee Whye Teh -
2017 Poster: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Oral: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Poster: QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Spotlight: Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2016 Poster: f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization »
Sebastian Nowozin · Botond Cseke · Ryota Tomioka -
2016 Poster: Gaussian Processes for Survival Analysis »
Tamara Fernandez · Nicolas Rivera · Yee Whye Teh -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : Random Tensor Decompositions for Regression and Collaborative Filtering »
Yee Whye Teh -
2015 Poster: A hybrid sampler for Poisson-Kingman mixture models »
Maria Lomeli · Stefano Favaro · Yee Whye Teh -
2015 Poster: Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm »
Qinqing Zheng · Ryota Tomioka -
2015 Poster: Expectation Particle Belief Propagation »
Thibaut Lienart · Yee Whye Teh · Arnaud Doucet -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Multitask learning meets tensor factorization: task imputation via convex optimization »
Kishan Wimalawarne · Masashi Sugiyama · Ryota Tomioka -
2014 Poster: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Spotlight: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Poster: Bayesian Hierarchical Community Discovery »
Charles Blundell · Yee Whye Teh -
2013 Poster: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Poster: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Spotlight: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Oral: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Poster: Convex Tensor Decomposition via Structured Schatten Norm Regularization »
Ryota Tomioka · Taiji Suzuki -
2012 Poster: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Learning Label Trees for Probabilistic Modelling of Implicit Feedback »
Andriy Mnih · Yee Whye Teh -
2012 Poster: MCMC for continuous-time discrete-state systems »
Vinayak Rao · Yee Whye Teh -
2012 Poster: Bayesian nonparametric models for ranked data »
Francois Caron · Yee Whye Teh -
2012 Poster: Perfect Dimensionality Recovery by Variational Bayesian PCA »
Shinichi Nakajima · Ryota Tomioka · Masashi Sugiyama · S. Derin Babacan -
2012 Spotlight: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Scalable imputation of genetic data with a discrete fragmentation-coagulation process »
Lloyd T Elliott · Yee Whye Teh -
2011 Poster: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Oral: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Poster: Gaussian process modulated renewal processes »
Vinayak Rao · Yee Whye Teh -
2011 Poster: Statistical Performance of Convex Tensor Decomposition »
Ryota Tomioka · Taiji Suzuki · Kohei Hayashi · Hisashi Kashima -
2011 Tutorial: Modern Bayesian Nonparametrics »
Peter Orbanz · Yee Whye Teh -
2010 Spotlight: Global Analytic Solution for Variational Bayesian Matrix Factorization »
Shinichi Nakajima · Masashi Sugiyama · Ryota Tomioka -
2010 Poster: Global Analytic Solution for Variational Bayesian Matrix Factorization »
Shinichi Nakajima · Masashi Sugiyama · Ryota Tomioka -
2010 Poster: Improvements to the Sequence Memoizer »
Jan Gasthaus · Yee Whye Teh -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2009 Poster: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Spotlight: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Poster: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2009 Spotlight: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2008 Oral: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Poster: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Spotlight: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: A mixture model for the evolution of gene expression in non-homogeneous datasets »
Gerald Quon · Yee Whye Teh · Esther Chan · Michael Brudno · Tim Hughes · Quaid Morris -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2008 Poster: An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering »
Dilan Gorur · Yee Whye Teh -
2007 Spotlight: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Poster: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Poster: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Session: Session 5: Probabilistic Representations and Learning »
Yee Whye Teh -
2007 Spotlight: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2006 Poster: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Spotlight: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling