Timezone: »
We propose a scalable framework for inference in a continuous sigmoidal Cox process that assumes the corresponding intensity function is given by a Gaussian process (GP) prior transformed with a scaled logistic sigmoid function. We present a tractable representation of the likelihood through augmentation with a superposition of Poisson processes. This view enables a structured variational approximation capturing dependencies across variables in the model. Our framework avoids discretization of the domain, does not require accurate numerical integration over the input space and is not limited to GPs with squared exponential kernels. We evaluate our approach on synthetic and real-world data showing that its benefits are particularly pronounced on multivariate input settings where it overcomes the limitations of mean-field methods and sampling schemes. We provide the state of-the-art in terms of speed, accuracy and uncertainty quantification trade-offs.
Author Information
Virginia Aglietti (University of Warwick)
Edwin Bonilla (CSIRO's Data61)
Theo Damoulas (University of Warwick & The Alan Turing Institute)
Sally Cripps (University of Sydney)
More from the Same Authors
-
2020 Poster: Generalised Bayesian Filtering via Sequential Monte Carlo »
Ayman Boustati · Omer Deniz Akyildiz · Theodoros Damoulas · Adam Johansen -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2019 Poster: Multi-resolution Multi-task Gaussian Processes »
Oliver Hamelijnck · Theodoros Damoulas · Kangrui Wang · Mark Girolami -
2018 Poster: Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with $\beta$-Divergences »
Jeremias Knoblauch · Jack E Jewson · Theodoros Damoulas -
2015 Poster: Scalable Inference for Gaussian Process Models with Black-Box Likelihoods »
Amir Dezfouli · Edwin Bonilla -
2014 Poster: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Spotlight: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Poster: Automated Variational Inference for Gaussian Process Models »
Trung V Nguyen · Edwin Bonilla -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2011 Poster: Improving Topic Coherence with Regularized Topic Models »
David Newman · Edwin Bonilla · Wray Buntine -
2010 Poster: Gaussian Process Preference Elicitation »
Edwin Bonilla · Shengbo Guo · Scott Sanner -
2007 Poster: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams -
2007 Spotlight: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams