Timezone: »
We study the problem of learning Bayesian-optimal revenue-maximizing auctions. The classical approach to maximizing revenue requires a known prior distribution on the demand of the bidders, although recent work has shown how to replace the knowledge of a prior distribution with a polynomial sample. However, in an online setting, when buyers can participate in multiple rounds, standard learning techniques are susceptible to \emph{strategic overfitting}: bidders can improve their long-term wellbeing by manipulating the trajectory of the learning algorithm in earlier rounds. For example, they may be able to strategically adjust their behavior in earlier rounds to achieve lower, more favorable future prices. Such non-truthful behavior can hinder learning and harm revenue. In this paper, we combine tools from differential privacy, mechanism design, and sample complexity to give a repeated auction that (1) learns bidder demand from past data, (2) is approximately revenue-optimal, and (3) strategically robust, as it incentivizes bidders to behave truthfully.
Author Information
Jacob Abernethy (Georgia Institute of Technology)
Rachel Cummings (Georgia Tech)
Bhuvesh Kumar (Georgia Tech)
Sam Taggart (Oberlin College)
Jamie Morgenstern (University of Washington)
More from the Same Authors
-
2021 : How we browse: Measurement and analysis of digital behavior »
Yuliia Lut · Rachel Cummings -
2023 Poster: Faster Margin Maximization Rates for Generic Optimization Methods »
Guanghui Wang · Zihao Hu · Vidya Muthukumar · Jacob Abernethy -
2023 Poster: On Riemannian Projection-free Online Learning »
Zihao Hu · Guanghui Wang · Jacob Abernethy -
2022 : Panel »
Kristian Lum · Rachel Cummings · Jake Goldenfein · Sara Hooker · Joshua Loftus -
2022 : Accelerated Federated Optimization with Quantization »
Yeojoon Youn · Bhuvesh Kumar · Jacob Abernethy -
2022 : Fairness Panel »
Freedom Gumedze · Rachel Cummings · Bo Li · Robert Tillman · Edward Choi -
2022 Poster: Adaptive Oracle-Efficient Online Learning »
Guanghui Wang · Zihao Hu · Vidya Muthukumar · Jacob Abernethy -
2021 Poster: Observation-Free Attacks on Stochastic Bandits »
Yinglun Xu · Bhuvesh Kumar · Jacob Abernethy -
2019 Poster: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala -
2019 Spotlight: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala -
2019 Poster: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Spotlight: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2018 : Panel discussion: Opportunities to organize new impactful challenges. »
Jacob Abernethy -
2018 : Panel discussion: Opportunities to organize new impactful challenges »
Jacob Abernethy -
2018 Workshop: CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2018 : Building Algorithms by Playing Games »
Jacob D Abernethy -
2018 Poster: Differentially Private Change-Point Detection »
Rachel Cummings · Sara Krehbiel · Yajun Mei · Rui Tuo · Wanrong Zhang -
2018 Poster: Acceleration through Optimistic No-Regret Dynamics »
Jun-Kun Wang · Jacob Abernethy -
2018 Poster: Differential Privacy for Growing Databases »
Rachel Cummings · Sara Krehbiel · Kevin A Lai · Uthaipon Tantipongpipat -
2018 Spotlight: Acceleration through Optimistic No-Regret Dynamics »
Jun-Kun Wang · Jacob Abernethy -
2017 Workshop: Machine Learning Challenges as a Research Tool »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2017 Poster: On Frank-Wolfe and Equilibrium Computation »
Jacob D Abernethy · Jun-Kun Wang -
2017 Spotlight: On Frank-Wolfe and Equilibrium Computation »
Jacob D Abernethy · Jun-Kun Wang -
2016 Poster: Threshold Bandits, With and Without Censored Feedback »
Jacob D Abernethy · Kareem Amin · Ruihao Zhu -
2016 Poster: Fairness in Learning: Classic and Contextual Bandits »
Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth -
2015 Poster: Fighting Bandits with a New Kind of Smoothness »
Jacob D Abernethy · Chansoo Lee · Ambuj Tewari -
2015 Poster: A Market Framework for Eliciting Private Data »
Bo Waggoner · Rafael Frongillo · Jacob D Abernethy -
2015 Poster: On the Pseudo-Dimension of Nearly Optimal Auctions »
Jamie Morgenstern · Tim Roughgarden -
2015 Spotlight: On the Pseudo-Dimension of Nearly Optimal Auctions »
Jamie Morgenstern · Tim Roughgarden -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2013 Poster: Minimax Optimal Algorithms for Unconstrained Linear Optimization »
Brendan McMahan · Jacob D Abernethy -
2013 Poster: Adaptive Market Making via Online Learning »
Jacob D Abernethy · Satyen Kale -
2013 Poster: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Spotlight: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Oral: Adaptive Market Making via Online Learning »
Jacob D Abernethy · Satyen Kale -
2011 Poster: A Collaborative Mechanism for Crowdsourcing Prediction Problems »
Jacob D Abernethy · Rafael Frongillo -
2011 Oral: A Collaborative Mechanism for Crowdsourcing Prediction Problems »
Jacob D Abernethy · Rafael Frongillo -
2010 Poster: Repeated Games against Budgeted Adversaries »
Jacob D Abernethy · Manfred K. Warmuth