Timezone: »
In this paper, we aim to learn a low-dimensional Euclidean representation from a set of constraints of the form “item j is closer to item i than item k”. Existing approaches for this “ordinal embedding” problem require expensive optimization procedures, which cannot scale to handle increasingly larger datasets. To address this issue, we propose a landmark-based strategy, which we call Landmark Ordinal Embedding (LOE). Our approach trades off statistical efficiency for computational efficiency by exploiting the low-dimensionality of the latent embedding. We derive bounds establishing the statistical consistency of LOE under the popular Bradley- Terry-Luce noise model. Through a rigorous analysis of the computational complexity, we show that LOE is significantly more efficient than conventional ordinal embedding approaches as the number of items grows. We validate these characterizations empirically on both synthetic and real datasets. We also present a practical approach that achieves the “best of both worlds”, by using LOE to warm-start existing methods that are more statistically efficient but computationally expensive.
Author Information
Nikhil Ghosh (UC Berkeley)
Yuxin Chen (UChicago)
Yisong Yue (Caltech)
More from the Same Authors
-
2021 : The Multi-Agent Behavior Dataset: Mouse Dyadic Social Interactions »
Jennifer J Sun · Tomomi Karigo · Dipam Chakraborty · Sharada Mohanty · Benjamin Wild · Quan Sun · Chen Chen · David Anderson · Pietro Perona · Yisong Yue · Ann Kennedy -
2021 : Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning »
Cameron Voloshin · Hoang Le · Nan Jiang · Yisong Yue -
2022 : Gradient dynamics of single-neuron autoencoders on orthogonal data »
Nikhil Ghosh · Spencer Frei · Wooseok Ha · Bin Yu -
2022 : Neurosymbolic Programming for Science »
Jennifer J Sun · Megan Tjandrasuwita · Atharva Sehgal · Armando Solar-Lezama · Swarat Chaudhuri · Yisong Yue · Omar Costilla Reyes -
2022 : SustainGym: A Benchmark Suite of Reinforcement Learning for Sustainability Applications »
Christopher Yeh · Victor Li · Rajeev Datta · Yisong Yue · Adam Wierman -
2022 : Deconstructing Distributions: A Pointwise Framework of Learning »
Gal Kaplun · Nikhil Ghosh · Saurabh Garg · Boaz Barak · Preetum Nakkiran -
2022 : Panel »
Jeevana Priya Inala · Pushmeet Kohli · Ann Kennedy · Sriram Rajamani · Yisong Yue -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 : Deep Neural Imputation: A Framework for Recovering Incomplete Brain Recordings »
Sabera Talukder · Jennifer J Sun · Matthew Leonard · Bingni Brunton · Yisong Yue -
2022 Poster: Policy Optimization with Linear Temporal Logic Constraints »
Cameron Voloshin · Hoang Le · Swarat Chaudhuri · Yisong Yue -
2021 : Panel B: Safe Learning and Decision Making in Uncertain and Unstructured Environments »
Yisong Yue · J. Zico Kolter · Ivan Dario D Jimenez Rodriguez · Dragos Margineantu · Animesh Garg · Melissa Greeff -
2021 : Learning for Agile Control in the Real World: Challenges and Opportunities »
Yisong Yue · Ivan Dario D Jimenez Rodriguez -
2021 Poster: Meta-Adaptive Nonlinear Control: Theory and Algorithms »
Guanya Shi · Kamyar Azizzadenesheli · Michael O'Connell · Soon-Jo Chung · Yisong Yue -
2021 Poster: DeepGEM: Generalized Expectation-Maximization for Blind Inversion »
Angela Gao · Jorge Castellanos · Yisong Yue · Zachary Ross · Katherine Bouman -
2021 Poster: Iterative Amortized Policy Optimization »
Joseph Marino · Alexandre Piche · Alessandro Davide Ialongo · Yisong Yue -
2020 Workshop: Learning Meets Combinatorial Algorithms »
Marin Vlastelica · Jialin Song · Aaron Ferber · Brandon Amos · Georg Martius · Bistra Dilkina · Yisong Yue -
2020 Poster: Online Optimization with Memory and Competitive Control »
Guanya Shi · Yiheng Lin · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2020 Poster: A General Large Neighborhood Search Framework for Solving Integer Linear Programs »
Jialin Song · ravi lanka · Yisong Yue · Bistra Dilkina -
2020 Poster: Learning compositional functions via multiplicative weight updates »
Jeremy Bernstein · Jiawei Zhao · Markus Meister · Ming-Yu Liu · Anima Anandkumar · Yisong Yue -
2020 Session: Orals & Spotlights Track 30: Optimization/Theory »
Yuxin Chen · Francis Bach -
2020 Poster: Learning Differentiable Programs with Admissible Neural Heuristics »
Ameesh Shah · Eric Zhan · Jennifer J Sun · Abhinav Verma · Yisong Yue · Swarat Chaudhuri -
2020 Poster: On the distance between two neural networks and the stability of learning »
Jeremy Bernstein · Arash Vahdat · Yisong Yue · Ming-Yu Liu -
2020 Poster: The Power of Predictions in Online Control »
Chenkai Yu · Guanya Shi · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2019 Workshop: Safety and Robustness in Decision-making »
Mohammad Ghavamzadeh · Shie Mannor · Yisong Yue · Marek Petrik · Yinlam Chow -
2019 Poster: Imitation-Projected Programmatic Reinforcement Learning »
Abhinav Verma · Hoang Le · Yisong Yue · Swarat Chaudhuri -
2019 Poster: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation »
Yukai Liu · Rose Yu · Stephan Zheng · Eric Zhan · Yisong Yue -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2019 Poster: Preference-Based Batch and Sequential Teaching: Towards a Unified View of Models »
Farnam Mansouri · Yuxin Chen · Ara Vartanian · Jerry Zhu · Adish Singla -
2018 : Yisong Yue »
Yisong Yue -
2018 Poster: Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners »
Yuxin Chen · Adish Singla · Oisin Mac Aodha · Pietro Perona · Yisong Yue -
2018 Poster: A General Method for Amortizing Variational Filtering »
Joseph Marino · Milan Cvitkovic · Yisong Yue -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2016 Poster: Generating Long-term Trajectories Using Deep Hierarchical Networks »
Stephan Zheng · Yisong Yue · Patrick Lucey -
2015 Poster: Smooth Interactive Submodular Set Cover »
Bryan He · Yisong Yue -
2015 Demonstration: Data-Driven Speech Animation »
Yisong Yue · Iain Matthews