Timezone: »

 
Poster
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans

Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #178

We present an efficient algorithm for maximum likelihood estimation (MLE) of exponential family models, with a general parametrization of the energy function that includes neural networks. We exploit the primal-dual view of the MLE with a kinetics augmented model to obtain an estimate associated with an adversarial dual sampler. To represent this sampler, we introduce a novel neural architecture, dynamics embedding, that generalizes Hamiltonian Monte-Carlo (HMC). The proposed approach inherits the flexibility of HMC while enabling tractable entropy estimation for the augmented model. By learning both a dual sampler and the primal model simultaneously, and sharing parameters between them, we obviate the requirement to design a separate sampling procedure once the model has been trained, leading to more effective learning. We show that many existing estimators, such as contrastive divergence, pseudo/composite-likelihood, score matching, minimum Stein discrepancy estimator, non-local contrastive objectives, noise-contrastive estimation, and minimum probability flow, are special cases of the proposed approach, each expressed by a different (fixed) dual sampler. An empirical investigation shows that adapting the sampler during MLE can significantly improve on state-of-the-art estimators.

Author Information

Bo Dai (Google Brain)
Zhen Liu (MILA, University of Montreal)
Hanjun Dai (Georgia Institute of Technology)
Niao He (UIUC)
Arthur Gretton (Gatsby Unit, UCL)

Arthur Gretton is a Professor with the Gatsby Computational Neuroscience Unit at UCL. He received degrees in Physics and Systems Engineering from the Australian National University, and a PhD with Microsoft Research and the Signal Processing and Communications Laboratory at the University of Cambridge. He previously worked at the MPI for Biological Cybernetics, and at the Machine Learning Department, Carnegie Mellon University. Arthur's recent research interests in machine learning include the design and training of generative models, both implicit (e.g. GANs) and explicit (high/infinite dimensional exponential family models), nonparametric hypothesis testing, and kernel methods. He has been an associate editor at IEEE Transactions on Pattern Analysis and Machine Intelligence from 2009 to 2013, an Action Editor for JMLR since April 2013, an Area Chair for NeurIPS in 2008 and 2009, a Senior Area Chair for NeurIPS in 2018, an Area Chair for ICML in 2011 and 2012, and a member of the COLT Program Committee in 2013. Arthur was program chair for AISTATS in 2016 (with Christian Robert), tutorials chair for ICML 2018 (with Ruslan Salakhutdinov), workshops chair for ICML 2019 (with Honglak Lee), program chair for the Dali workshop in 2019 (with Krikamol Muandet and Shakir Mohammed), and co-organsier of the Machine Learning Summer School 2019 in London (with Marc Deisenroth).

Le Song (Georgia Institute of Technology)
Dale Schuurmans (Google Inc.)

More from the Same Authors