Timezone: »
Poster
Statistical Model Aggregation via Parameter Matching
Mikhail Yurochkin · Mayank Agarwal · Soumya Ghosh · Kristjan Greenewald · Nghia Hoang
Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #145
We consider the problem of aggregating models learned from sequestered, possibly heterogeneous datasets. Exploiting tools from Bayesian nonparametrics, we develop a general meta-modeling framework that learns shared global latent structures by identifying correspondences among local model parameterizations. Our proposed framework is model-independent and is applicable to a wide range of model types. After verifying our approach on simulated data, we demonstrate its utility in aggregating Gaussian topic models, hierarchical Dirichlet process based hidden Markov models, and sparse Gaussian processes with applications spanning text summarization, motion capture analysis, and temperature forecasting.
Author Information
Mikhail Yurochkin (IBM Research, MIT-IBM Watson AI Lab)
Mayank Agarwal (IBM Research AI, MIT-IBM Watson AI Lab)
Soumya Ghosh (IBM Research)
Kristjan Greenewald (IBM Research)
Nghia Hoang (IBM Research)
More from the Same Authors
-
2020 Poster: Asymptotic Guarantees for Generative Modeling Based on the Smooth Wasserstein Distance »
Ziv Goldfeld · Kristjan Greenewald · Kengo Kato -
2020 Poster: Active Structure Learning of Causal DAGs via Directed Clique Trees »
Chandler Squires · Sara Magliacane · Kristjan Greenewald · Dmitriy Katz · Murat Kocaoglu · Karthikeyan Shanmugam -
2020 Poster: Continuous Regularized Wasserstein Barycenters »
Lingxiao Li · Aude Genevay · Mikhail Yurochkin · Justin M Solomon -
2020 Poster: Approximate Cross-Validation for Structured Models »
Soumya Ghosh · Will Stephenson · Tin Nguyen · Sameer Deshpande · Tamara Broderick -
2020 Poster: Entropic Causal Inference: Identifiability and Finite Sample Results »
Spencer Compton · Murat Kocaoglu · Kristjan Greenewald · Dmitriy Katz -
2020 Demonstration: IBM Federated Learning Community Edition: An Interactive Demonstration »
Laura Wynter · Chaitanya Kumar · Pengqian Yu · Mikhail Yurochkin · Amogh Tarcar -
2019 Poster: Alleviating Label Switching with Optimal Transport »
Pierre Monteiller · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin M Solomon · Mikhail Yurochkin -
2019 Poster: Hierarchical Optimal Transport for Document Representation »
Mikhail Yurochkin · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin M Solomon -
2019 Demonstration: Project BB: Bringing AI to the Command Line »
Tathagata Chakraborti · Mayank Agarwal -
2019 Poster: Scalable inference of topic evolution via models for latent geometric structures »
Mikhail Yurochkin · Zhiwei Fan · Aritra Guha · Paraschos Koutris · XuanLong Nguyen -
2019 Poster: Sample Efficient Active Learning of Causal Trees »
Kristjan Greenewald · Dmitriy Katz · Karthikeyan Shanmugam · Sara Magliacane · Murat Kocaoglu · Enric Boix Adsera · Guy Bresler -
2012 Poster: From Deformations to Parts: Motion-based Segmentation of 3D Objects »
Soumya Ghosh · Erik Sudderth · Matthew Loper · Michael J Black -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei