Timezone: »
Statistical tests are at the heart of many scientific tasks. To validate their hypothesis, researchers in medical and social sciences use individuals' data. The sensitivity of participants' data requires the design of statistical tests that ensure the privacy of the individuals in the most efficient way. In this paper, we use the framework of property testing to design algorithms to test the properties of the distribution that the data is drawn from with respect to differential privacy. In particular, we investigate testing two fundamental properties of distributions: (1) testing the equivalence of two distributions when we have unequal numbers of samples from the two distributions. (2) Testing independence of two random variables. In both cases, we show that our testers achieve near optimal sample complexity (up to logarithmic factors). Moreover, our dependence on the privacy parameter is an additive term, which indicates that differential privacy can be obtained in most regimes of parameters for free.
Author Information
Maryam Aliakbarpour (MIT)
Ilias Diakonikolas (UW Madison)
Daniel Kane (UCSD)
Ronitt Rubinfeld (MIT, TAU)
More from the Same Authors
-
2021 Spotlight: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2021 Spotlight: Forster Decomposition and Learning Halfspaces with Noise »
Ilias Diakonikolas · Daniel Kane · Christos Tzamos -
2021 Spotlight: Statistical Query Lower Bounds for List-Decodable Linear Regression »
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Thanasis Pittas · Alistair Stewart -
2022 Poster: SQ Lower Bounds for Learning Single Neurons with Massart Noise »
Ilias Diakonikolas · Daniel Kane · Lisheng Ren · Yuxin Sun -
2022 Poster: Nearly-Tight Bounds for Testing Histogram Distributions »
ClĂ©ment L Canonne · Ilias Diakonikolas · Daniel Kane · Sihan Liu -
2022 Poster: List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering »
Ilias Diakonikolas · Daniel Kane · Sushrut Karmalkar · Ankit Pensia · Thanasis Pittas -
2022 Poster: Cryptographic Hardness of Learning Halfspaces with Massart Noise »
Ilias Diakonikolas · Daniel Kane · Pasin Manurangsi · Lisheng Ren -
2022 Poster: Outlier-Robust Sparse Estimation via Non-Convex Optimization »
Yu Cheng · Ilias Diakonikolas · Rong Ge · Shivam Gupta · Daniel Kane · Mahdi Soltanolkotabi -
2022 Poster: Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks »
Anders Aamand · Justin Chen · Piotr Indyk · Shyam Narayanan · Ronitt Rubinfeld · Nicholas Schiefer · Sandeep Silwal · Tal Wagner -
2022 Poster: Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions »
Ilias Diakonikolas · Daniel Kane · Jasper Lee · Ankit Pensia -
2021 Poster: ReLU Regression with Massart Noise »
Ilias Diakonikolas · Jong Ho Park · Christos Tzamos -
2021 Poster: Statistical Query Lower Bounds for List-Decodable Linear Regression »
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Thanasis Pittas · Alistair Stewart -
2021 Poster: Forster Decomposition and Learning Halfspaces with Noise »
Ilias Diakonikolas · Daniel Kane · Christos Tzamos -
2021 Poster: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2020 Poster: Testing Determinantal Point Processes »
Khashayar Gatmiry · Maryam Aliakbarpour · Stefanie Jegelka -
2020 Spotlight: Testing Determinantal Point Processes »
Khashayar Gatmiry · Maryam Aliakbarpour · Stefanie Jegelka -
2020 Poster: List-Decodable Mean Estimation via Iterative Multi-Filtering »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard -
2020 Poster: Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals »
Ilias Diakonikolas · Daniel Kane · Nikos Zarifis -
2020 Poster: Non-Convex SGD Learns Halfspaces with Adversarial Label Noise »
Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Nikos Zarifis -
2020 Poster: The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise »
Ilias Diakonikolas · Daniel M. Kane · Pasin Manurangsi -
2020 Poster: Outlier Robust Mean Estimation with Subgaussian Rates via Stability »
Ilias Diakonikolas · Daniel M. Kane · Ankit Pensia -
2020 Poster: The Power of Comparisons for Actively Learning Linear Classifiers »
Max Hopkins · Daniel Kane · Shachar Lovett -
2019 Poster: Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin »
Ilias Diakonikolas · Daniel Kane · Pasin Manurangsi -
2019 Poster: Distribution-Independent PAC Learning of Halfspaces with Massart Noise »
Ilias Diakonikolas · Themis Gouleakis · Christos Tzamos -
2019 Poster: Equipping Experts/Bandits with Long-term Memory »
Kai Zheng · Haipeng Luo · Ilias Diakonikolas · Liwei Wang -
2019 Spotlight: Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin »
Ilias Diakonikolas · Daniel Kane · Pasin Manurangsi -
2019 Oral: Distribution-Independent PAC Learning of Halfspaces with Massart Noise »
Ilias Diakonikolas · Themis Gouleakis · Christos Tzamos -
2019 Poster: Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering »
Ilias Diakonikolas · Daniel Kane · Sushrut Karmalkar · Eric Price · Alistair Stewart -
2019 Poster: A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families »
Brian Axelrod · Ilias Diakonikolas · Alistair Stewart · Anastasios Sidiropoulos · Gregory Valiant -
2018 Poster: Robust Learning of Fixed-Structure Bayesian Networks »
Yu Cheng · Ilias Diakonikolas · Daniel Kane · Alistair Stewart