Timezone: »
Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction.
Author Information
Ehsan Hajiramezanali (Texas A&M University)
Arman Hasanzadeh (Texas A&M University)
Krishna Narayanan (Texas A&M University)
Nick Duffield (Texas A&M University)
Mingyuan Zhou (University of Texas at Austin)
Xiaoning Qian (Texas A&M)
More from the Same Authors
-
2022 Poster: Knowledge-Aware Bayesian Deep Topic Model »
Dongsheng Wang · Yishi Xu · Miaoge Li · Zhibin Duan · Chaojie Wang · Bo Chen · Mingyuan Zhou -
2022 Poster: HyperMiner: Topic Taxonomy Mining with Hyperbolic Embedding »
Yishi Xu · Dongsheng Wang · Bo Chen · Ruiying Lu · Zhibin Duan · Mingyuan Zhou -
2022 : STab: Self-supervised Learning for Tabular Data »
Ehsan Hajiramezanali · Max Shen · Gabriele Scalia · Nathaniel Diamant -
2022 : Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning for Task-Oriented Dialogue Systems »
Yihao Feng · Shentao Yang · Shujian Zhang · Jianguo Zhang · Caiming Xiong · Mingyuan Zhou · Huan Wang -
2022 : Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning for Task-Oriented Dialogue Systems »
Yihao Feng · Shentao Yang · Shujian Zhang · Jianguo Zhang · Caiming Xiong · Mingyuan Zhou · Huan Wang -
2022 : Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning »
Zhendong Wang · jonathan j hunt · Mingyuan Zhou -
2023 Poster: Beta Diffusion »
Mingyuan Zhou · Tianqi Chen · Huangjie Zheng · Zhendong Wang -
2023 Poster: Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models »
Zhendong Wang · Yifan Jiang · Huangjie Zheng · Peihao Wang · Pengcheng He · Zhangyang Wang · Weizhu Chen · Mingyuan Zhou -
2023 Poster: Few-shot Generation via Recalling the Episodic-Semantic Memory like Human Being »
Zhibin Duan · Zhiyi Lv · Chaojie Wang · Bo Chen · Bo An · Mingyuan Zhou -
2023 Poster: Context-guided Embedding Adaptation for Effective Topic Modeling in Low-Resource Regimes »
Yishi Xu · Jianqiao Sun · Yudi Su · Xinyang Liu · Zhibin Duan · Bo Chen · Mingyuan Zhou -
2023 Poster: Preference-grounded Token-level Guidance for Language Model Fine-tuning »
Shentao Yang · Shujian Zhang · Congying Xia · Yihao Feng · Caiming Xiong · Mingyuan Zhou -
2023 Poster: In-Context Learning Unlocked for Diffusion Models »
Zhendong Wang · Yifan Jiang · Yadong Lu · yelong shen · Pengcheng He · Weizhu Chen · Zhangyang Wang · Mingyuan Zhou -
2023 Poster: QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules »
Haiyang Yu · Meng Liu · Youzhi Luo · Alex Strasser · Xiaofeng Qian · Xiaoning Qian · Shuiwang Ji -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: HyperMiner: Topic Taxonomy Mining with Hyperbolic Embedding »
Yishi Xu · Dongsheng Wang · Bo Chen · Ruiying Lu · Zhibin Duan · Mingyuan Zhou -
2022 Spotlight: Lightning Talks 2A-4 »
Sarthak Mittal · Richard Grumitt · Zuoyu Yan · Lihao Wang · Dongsheng Wang · Alexander Korotin · Jiangxin Sun · Ankit Gupta · Vage Egiazarian · Tengfei Ma · Yi Zhou · Yishi Xu · Albert Gu · Biwei Dai · Chunyu Wang · Yoshua Bengio · Uros Seljak · Miaoge Li · Guillaume Lajoie · Yiqun Wang · Liangcai Gao · Lingxiao Li · Jonathan Berant · Huang Hu · Xiaoqing Zheng · Zhibin Duan · Hanjiang Lai · Evgeny Burnaev · Zhi Tang · Zhi Jin · Xuanjing Huang · Chaojie Wang · Yusu Wang · Jian-Fang Hu · Bo Chen · Chao Chen · Hao Zhou · Mingyuan Zhou -
2022 Spotlight: Knowledge-Aware Bayesian Deep Topic Model »
Dongsheng Wang · Yishi Xu · Miaoge Li · Zhibin Duan · Chaojie Wang · Bo Chen · Mingyuan Zhou -
2022 Poster: Learning to Re-weight Examples with Optimal Transport for Imbalanced Classification »
Dandan Guo · Zhuo Li · meixi zheng · He Zhao · Mingyuan Zhou · Hongyuan Zha -
2022 Poster: Adaptive Distribution Calibration for Few-Shot Learning with Hierarchical Optimal Transport »
Dandan Guo · Long Tian · He Zhao · Mingyuan Zhou · Hongyuan Zha -
2022 Poster: Alleviating "Posterior Collapse'' in Deep Topic Models via Policy Gradient »
Yewen Li · Chaojie Wang · Zhibin Duan · Dongsheng Wang · Bo Chen · Bo An · Mingyuan Zhou -
2022 Poster: A Variational Edge Partition Model for Supervised Graph Representation Learning »
Yilin He · Chaojie Wang · Hao Zhang · Bo Chen · Mingyuan Zhou -
2022 Poster: A Unified Framework for Alternating Offline Model Training and Policy Learning »
Shentao Yang · Shujian Zhang · Yihao Feng · Mingyuan Zhou -
2022 Poster: CARD: Classification and Regression Diffusion Models »
Xizewen Han · Huangjie Zheng · Mingyuan Zhou -
2021 Poster: Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions »
Huangjie Zheng · Mingyuan Zhou -
2021 Poster: SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning »
Talip Ucar · Ehsan Hajiramezanali · Lindsay Edwards -
2021 Poster: Efficient Active Learning for Gaussian Process Classification by Error Reduction »
Guang Zhao · Edward Dougherty · Byung-Jun Yoon · Francis Alexander · Xiaoning Qian -
2021 Poster: Alignment Attention by Matching Key and Query Distributions »
Shujian Zhang · Xinjie Fan · Huangjie Zheng · Korawat Tanwisuth · Mingyuan Zhou -
2021 Poster: Probabilistic Margins for Instance Reweighting in Adversarial Training »
qizhou wang · Feng Liu · Bo Han · Tongliang Liu · Chen Gong · Gang Niu · Mingyuan Zhou · Masashi Sugiyama -
2021 Poster: Convex Polytope Trees »
Mohammadreza Armandpour · Ali Sadeghian · Mingyuan Zhou -
2021 Poster: TopicNet: Semantic Graph-Guided Topic Discovery »
Zhibin Duan · Yishi Xu · Bo Chen · Dongsheng Wang · Chaojie Wang · Mingyuan Zhou -
2021 Poster: A Prototype-Oriented Framework for Unsupervised Domain Adaptation »
Korawat Tanwisuth · Xinjie Fan · Huangjie Zheng · Shujian Zhang · Hao Zhang · Bo Chen · Mingyuan Zhou -
2021 Poster: CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator »
Alek Dimitriev · Mingyuan Zhou -
2020 Poster: Bidirectional Convolutional Poisson Gamma Dynamical Systems »
wenchao chen · Chaojie Wang · Bo Chen · Yicheng Liu · Hao Zhang · Mingyuan Zhou -
2020 Poster: Implicit Distributional Reinforcement Learning »
Yuguang Yue · Zhendong Wang · Mingyuan Zhou -
2020 Poster: Deep Relational Topic Modeling via Graph Poisson Gamma Belief Network »
Chaojie Wang · Hao Zhang · Bo Chen · Dongsheng Wang · Zhengjue Wang · Mingyuan Zhou -
2020 Poster: BayReL: Bayesian Relational Learning for Multi-omics Data Integration »
Ehsan Hajiramezanali · Arman Hasanzadeh · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: Adaptive Shrinkage Estimation for Streaming Graphs »
Nesreen K. Ahmed · Nick Duffield -
2020 Poster: Bayesian Attention Modules »
Xinjie Fan · Shujian Zhang · Bo Chen · Mingyuan Zhou -
2019 Poster: Semi-Implicit Graph Variational Auto-Encoders »
Arman Hasanzadeh · Ehsan Hajiramezanali · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2018 Poster: Nonparametric Bayesian Lomax delegate racing for survival analysis with competing risks »
Quan Zhang · Mingyuan Zhou -
2018 Poster: Deep Poisson gamma dynamical systems »
Dandan Guo · Bo Chen · Hao Zhang · Mingyuan Zhou -
2018 Poster: Dirichlet belief networks for topic structure learning »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: Parsimonious Bayesian deep networks »
Mingyuan Zhou -
2018 Poster: Masking: A New Perspective of Noisy Supervision »
Bo Han · Jiangchao Yao · Gang Niu · Mingyuan Zhou · Ivor Tsang · Ya Zhang · Masashi Sugiyama -
2018 Poster: Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data »
Ehsan Hajiramezanali · Siamak Zamani Dadaneh · Alireza Karbalayghareh · Mingyuan Zhou · Xiaoning Qian -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2015 Poster: The Poisson Gamma Belief Network »
Mingyuan Zhou · Yulai Cong · Bo Chen -
2014 Poster: Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership Modeling »
Mingyuan Zhou -
2012 Poster: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Spotlight: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Oral: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Larry Carin