Timezone: »
Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction.
Author Information
Ehsan Hajiramezanali (Texas A&M University)
Arman Hasanzadeh (Texas A&M University)
Krishna Narayanan (Texas A&M University)
Nick Duffield (Texas A&M University)
Mingyuan Zhou (University of Texas at Austin)
Xiaoning Qian (Texas A&M)
More from the Same Authors
-
2021 Poster: Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions »
Huangjie Zheng · Mingyuan Zhou -
2021 Poster: SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning »
Talip Ucar · Ehsan Hajiramezanali · Lindsay Edwards -
2021 Poster: Efficient Active Learning for Gaussian Process Classification by Error Reduction »
Guang Zhao · Edward Dougherty · Byung-Jun Yoon · Francis Alexander · Xiaoning Qian -
2021 Poster: Alignment Attention by Matching Key and Query Distributions »
Shujian Zhang · Xinjie Fan · Huangjie Zheng · Korawat Tanwisuth · Mingyuan Zhou -
2021 Poster: Probabilistic Margins for Instance Reweighting in Adversarial Training »
qizhou wang · Feng Liu · Bo Han · Tongliang Liu · Chen Gong · Gang Niu · Mingyuan Zhou · Masashi Sugiyama -
2021 Poster: Convex Polytope Trees »
Mohammadreza Armandpour · Ali Sadeghian · Mingyuan Zhou -
2021 Poster: TopicNet: Semantic Graph-Guided Topic Discovery »
Zhibin Duan · Yi.shi Xu · Bo Chen · dongsheng wang · Chaojie Wang · Mingyuan Zhou -
2021 Poster: A Prototype-Oriented Framework for Unsupervised Domain Adaptation »
Korawat Tanwisuth · Xinjie Fan · Huangjie Zheng · Shujian Zhang · Hao Zhang · Bo Chen · Mingyuan Zhou -
2021 Poster: CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator »
Alek Dimitriev · Mingyuan Zhou -
2020 Poster: Bidirectional Convolutional Poisson Gamma Dynamical Systems »
wenchao chen · Chaojie Wang · Bo Chen · Yicheng Liu · Hao Zhang · Mingyuan Zhou -
2020 Poster: Implicit Distributional Reinforcement Learning »
Yuguang Yue · Zhendong Wang · Mingyuan Zhou -
2020 Poster: Deep Relational Topic Modeling via Graph Poisson Gamma Belief Network »
Chaojie Wang · Hao Zhang · Bo Chen · Dongsheng Wang · Zhengjue Wang · Mingyuan Zhou -
2020 Poster: BayReL: Bayesian Relational Learning for Multi-omics Data Integration »
Ehsan Hajiramezanali · Arman Hasanzadeh · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: Adaptive Shrinkage Estimation for Streaming Graphs »
Nesreen K. Ahmed · Nick Duffield -
2020 Poster: Bayesian Attention Modules »
Xinjie Fan · Shujian Zhang · Bo Chen · Mingyuan Zhou -
2019 Poster: Semi-Implicit Graph Variational Auto-Encoders »
Arman Hasanzadeh · Ehsan Hajiramezanali · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2018 Poster: Nonparametric Bayesian Lomax delegate racing for survival analysis with competing risks »
Quan Zhang · Mingyuan Zhou -
2018 Poster: Deep Poisson gamma dynamical systems »
Dandan Guo · Bo Chen · Hao Zhang · Mingyuan Zhou -
2018 Poster: Dirichlet belief networks for topic structure learning »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: Parsimonious Bayesian deep networks »
Mingyuan Zhou -
2018 Poster: Masking: A New Perspective of Noisy Supervision »
Bo Han · Jiangchao Yao · Gang Niu · Mingyuan Zhou · Ivor Tsang · Ya Zhang · Masashi Sugiyama -
2018 Poster: Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data »
Ehsan Hajiramezanali · Siamak Zamani Dadaneh · Alireza Karbalayghareh · Mingyuan Zhou · Xiaoning Qian -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2015 Poster: The Poisson Gamma Belief Network »
Mingyuan Zhou · Yulai Cong · Bo Chen -
2014 Poster: Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership Modeling »
Mingyuan Zhou -
2012 Poster: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Spotlight: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Oral: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Larry Carin