Timezone: »
Poster
Contextual Bandits with Cross-Learning
Santiago Balseiro · Negin Golrezaei · Mohammad Mahdian · Vahab Mirrokni · Jon Schneider
Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #41
In the classical contextual bandits problem, in each round $t$, a learner observes some
context $c$, chooses some action $a$ to perform, and receives some reward $r_{a,t}(c)$. We consider the variant of this problem where in addition to receiving the reward $r_{a,t}(c)$, the learner also learns the values of $r_{a,t}(c')$ for all other contexts $c'$; i.e., the rewards that would have been achieved by performing that action under different contexts. This variant arises in several strategic settings, such as learning how to bid in non-truthful repeated auctions (in this setting the context is the decision maker's private valuation for each auction). We call this problem the contextual bandits problem with cross-learning.
The best algorithms for the classical contextual bandits problem achieve $\tilde{O}(\sqrt{CKT})$ regret against all stationary policies, where $C$ is the number of contexts, $K$ the number of actions, and $T$ the number of rounds. We demonstrate algorithms for the contextual bandits problem with cross-learning that remove the dependence on $C$ and achieve regret $\tilde{O}(\sqrt{KT})$ (when contexts are stochastic with known distribution), $\tilde{O}(K^{1/3}T^{2/3})$ (when contexts are stochastic with unknown distribution), and $\tilde{O}(\sqrt{KT})$ (when contexts are adversarial but rewards are stochastic). We simulate our algorithms on real auction data from an ad exchange running first-price auctions (showing that they outperform traditional contextual bandit algorithms).
Author Information
Santiago Balseiro (Columbia University)
Negin Golrezaei (University of Southern California)
Mohammad Mahdian (Google Research)
Vahab Mirrokni (Google Research NYC)
Jon Schneider (Google Research)
More from the Same Authors
-
2021 Poster: Contextual Recommendations and Low-Regret Cutting-Plane Algorithms »
Sreenivas Gollapudi · Guru Guruganesh · Kostas Kollias · Pasin Manurangsi · Renato Leme · Jon Schneider -
2021 Poster: Margin-Independent Online Multiclass Learning via Convex Geometry »
Guru Guruganesh · Allen Liu · Jon Schneider · Joshua Wang -
2021 Poster: Robust Auction Design in the Auto-bidding World »
Santiago Balseiro · Yuan Deng · Jieming Mao · Vahab Mirrokni · Song Zuo -
2020 Poster: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Spotlight: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Poster: Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Benjamin Moseley · Philip Pham · Sergei Vassilvitskii · Yuyan Wang -
2020 Poster: Smoothly Bounding User Contributions in Differential Privacy »
Alessandro Epasto · Mohammad Mahdian · Jieming Mao · Vahab Mirrokni · Lijie Ren -
2020 Poster: Contextual Reserve Price Optimization in Auctions via Mixed Integer Programming »
Joey Huchette · Haihao Lu · Hossein Esfandiari · Vahab Mirrokni -
2020 Poster: Myersonian Regression »
Allen Liu · Renato Leme · Jon Schneider -
2020 : Clustering At Scale »
Vahab Mirrokni -
2020 Expo Workshop: Mining and Learning with Graphs at Scale »
Vahab Mirrokni · Bryan Perozzi · Jakub Lacki · Jonathan Halcrow · Jaqui C Herman -
2020 : Introduction »
Vahab Mirrokni -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Contributed Talk - Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Philip Pham -
2019 Poster: Prior-Free Dynamic Auctions with Low Regret Buyers »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Poster: Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions »
Negin Golrezaei · Adel Javanmard · Vahab Mirrokni -
2019 Poster: Strategizing against No-regret Learners »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Oral: Strategizing against No-regret Learners »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Poster: A Robust Non-Clairvoyant Dynamic Mechanism for Contextual Auctions »
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni -
2019 Poster: Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and Beyond »
Lin Chen · Hossein Esfandiari · Gang Fu · Vahab Mirrokni -
2019 Poster: Variance Reduction in Bipartite Experiments through Correlation Clustering »
Jean Pouget-Abadie · Kevin Aydin · Warren Schudy · Kay Brodersen · Vahab Mirrokni -
2017 Poster: Dynamic Revenue Sharing »
Santiago Balseiro · Max Lin · Vahab Mirrokni · Renato Leme · IIIS Song Zuo -
2017 Poster: Affinity Clustering: Hierarchical Clustering at Scale »
Mohammadhossein Bateni · Soheil Behnezhad · Mahsa Derakhshan · MohammadTaghi Hajiaghayi · Raimondas Kiveris · Silvio Lattanzi · Vahab Mirrokni -
2016 Poster: Bi-Objective Online Matching and Submodular Allocations »
Hossein Esfandiari · Nitish Korula · Vahab Mirrokni -
2016 Poster: Community Detection on Evolving Graphs »
Stefano Leonardi · Aris Anagnostopoulos · Jakub Łącki · Silvio Lattanzi · Mohammad Mahdian -
2016 Poster: Linear Relaxations for Finding Diverse Elements in Metric Spaces »
Aditya Bhaskara · Mehrdad Ghadiri · Vahab Mirrokni · Ola Svensson -
2014 Poster: Distributed Balanced Clustering via Mapping Coresets »
Mohammadhossein Bateni · Aditya Bhaskara · Silvio Lattanzi · Vahab Mirrokni