Timezone: »
Poster
Tight Dimensionality Reduction for Sketching Low Degree Polynomial Kernels
Michela Meister · Tamas Sarlos · David Woodruff
Thu Dec 12 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #10
We revisit the classic randomized sketch of a tensor product of $q$ vectors $x_i\in\mathbb{R}^n$. The $i$-th coordinate $(Sx)_i$ of the sketch is equal to
$\prod_{j = 1}^q \langle u^{i, j}, x^j \rangle / \sqrt{m}$, where $u^{i,j}$ are independent random sign vectors. Kar and Karnick (JMLR, 2012) show that
if the sketching dimension $m = \Omega(\epsilon^{-2} C_{\Omega}^2 \log (1/\delta))$, where $C_{\Omega}$ is a certain property of the point set $\Omega$ one wants to sketch, then with probability $1-\delta$, $\|Sx\|_2 = (1\pm \epsilon)\|x\|_2$ for all $x\in\Omega$. However, in their analysis $C_{\Omega}^2$ can be as large as $\Theta(n^{2q})$, even for a set $\Omega$ of $O(1)$ vectors $x$.
We give a new analysis of this sketch, providing nearly optimal bounds.
Namely, we show an upper bound of
$m = \Theta \left (\epsilon^{-2} \log(n/\delta) + \epsilon^{-1} \log^q(n/\delta) \right ),$
which by composing with CountSketch, can be improved to
$\Theta(\epsilon^{-2}\log(1/(\delta \epsilon)) + \epsilon^{-1} \log^q (1/(\delta \epsilon))$. For the important case of $q = 2$ and $\delta = 1/\poly(n)$, this shows that $m = \Theta(\epsilon^{-2} \log(n) + \epsilon^{-1} \log^2(n))$,
demonstrating that the $\epsilon^{-2}$ and $\log^2(n)$ terms do not multiply each other. We also show a nearly matching lower bound of
$m = \Omega(\eps^{-2} \log(1/(\delta)) + \eps^{-1} \log^q(1/(\delta)))$.
In a number of applications, one has $|\Omega| = \poly(n)$ and in this case our bounds are optimal up to a constant factor. This is the first high probability sketch for tensor products that has optimal sketch size and can be implemented in $m \cdot \sum_{i=1}^q \textrm{nnz}(x_i)$ time, where $\textrm{nnz}(x_i)$ is the
number of non-zero entries of $x_i$.
Lastly, we empirically compare our sketch to other sketches for tensor products, and give a novel application to compressing neural networks.
Author Information
Michela Meister (Cornell University)
Tamas Sarlos (Google Research)
David Woodruff (Carnegie Mellon University)
More from the Same Authors
-
2023 Poster: Lower Bounds on Adaptive Sensing for Matrix Recovery »
Praneeth Kacham · David Woodruff -
2023 Poster: Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming »
Gregory Dexter · Petros Drineas · David Woodruff · Taisuke Yasuda -
2023 Poster: Computing Approximate $\ell_p$ Sensitivities »
Swati Padmanabhan · David Woodruff · Richard Zhang -
2023 Poster: Dense-Exponential Random Features: Sharp Positive Estimators of the Gaussian Kernel »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2023 Poster: Hardness of Low Rank Approximation of Entrywise Transformed Matrix Products »
Tamas Sarlos · Xingyou Song · David Woodruff · Richard Zhang -
2023 Poster: On Robust Streaming for Learning with Experts: Algorithms and Lower Bounds »
David Woodruff · Fred Zhang · Samson Zhou -
2023 Poster: Near-Optimal $k$-Clustering in the Sliding Window Model »
David Woodruff · Peilin Zhong · Samson Zhou -
2022 Spotlight: Optimal Query Complexities for Dynamic Trace Estimation »
David Woodruff · Fred Zhang · Richard Zhang -
2022 Poster: Chefs' Random Tables: Non-Trigonometric Random Features »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2022 Poster: Optimal Query Complexities for Dynamic Trace Estimation »
David Woodruff · Fred Zhang · Richard Zhang -
2019 Poster: Average Case Column Subset Selection for Entrywise $\ell_1$-Norm Loss »
Zhao Song · David Woodruff · Peilin Zhong -
2019 Poster: Efficient and Thrifty Voting by Any Means Necessary »
Debmalya Mandal · Ariel Procaccia · Nisarg Shah · David Woodruff -
2019 Poster: Regularized Weighted Low Rank Approximation »
Frank Ban · David Woodruff · Richard Zhang -
2019 Oral: Efficient and Thrifty Voting by Any Means Necessary »
Debmalya Mandal · Ariel Procaccia · Nisarg Shah · David Woodruff -
2019 Poster: Total Least Squares Regression in Input Sparsity Time »
Huaian Diao · Zhao Song · David Woodruff · Xin Yang -
2019 Poster: Optimal Sketching for Kronecker Product Regression and Low Rank Approximation »
Huaian Diao · Rajesh Jayaram · Zhao Song · Wen Sun · David Woodruff -
2019 Poster: Towards a Zero-One Law for Column Subset Selection »
Zhao Song · David Woodruff · Peilin Zhong -
2018 Poster: Robust Subspace Approximation in a Stream »
Roie Levin · Anish Prasad Sevekari · David Woodruff -
2018 Spotlight: Robust Subspace Approximation in a Stream »
Roie Levin · Anish Prasad Sevekari · David Woodruff -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Poster: On Coresets for Logistic Regression »
Alexander Munteanu · Chris Schwiegelshohn · Christian Sohler · David Woodruff -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: On Coresets for Logistic Regression »
Alexander Munteanu · Chris Schwiegelshohn · Christian Sohler · David Woodruff -
2018 Poster: Sublinear Time Low-Rank Approximation of Distance Matrices »
Ainesh Bakshi · David Woodruff -
2018 Spotlight: Sublinear Time Low-Rank Approximation of Distance Matrices »
Ainesh Bakshi · David Woodruff