Timezone: »
Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.
Author Information
Vivek Veeriah (University of Michigan)
Matteo Hessel (Google DeepMind)
Zhongwen Xu (DeepMind)
Janarthanan Rajendran (University of Michigan)
Richard L Lewis (University of Michigan)
Junhyuk Oh (DeepMind)
Hado van Hasselt (DeepMind)
David Silver (DeepMind)
Satinder Singh (University of Michigan)
More from the Same Authors
-
2021 Spotlight: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Spotlight: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2021 : GrASP: Gradient-Based Affordance Selection for Planning »
Vivek Veeriah · Zeyu Zheng · Richard L Lewis · Satinder Singh -
2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen -
2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen -
2022 : In-Context Policy Iteration »
Ethan Brooks · Logan Walls · Richard L Lewis · Satinder Singh -
2022 : Boosting Offline Reinforcement Learning via Data Resampling »
Yang Yue · Bingyi Kang · Xiao Ma · Zhongwen Xu · Gao Huang · Shuicheng Yan -
2022 : Mutual Information Regularized Offline Reinforcement Learning »
Xiao Ma · Bingyi Kang · Zhongwen Xu · Min Lin · Shuicheng Yan -
2022 : HloEnv: A Graph Rewrite Environment for Deep Learning Compiler Optimization Research »
Chin Yang Oh · Kunhao Zheng · Bingyi Kang · Xinyi Wan · Zhongwen Xu · Shuicheng Yan · Min Lin · Yangzihao Wang -
2022 : Optimistic Meta-Gradients »
Sebastian Flennerhag · Tom Zahavy · Brendan O'Donoghue · Hado van Hasselt · András György · Satinder Singh -
2022 : Replay Buffer With Local Forgetting for Adaptive Deep Model-Based Reinforcement Learning »
Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Harm Van Seijen · Sarath Chandar -
2022 : Efficient Offline Policy Optimization with a Learned Model »
Zichen Liu · Siyi Li · Wee Sun Lee · Shuicheng Yan · Zhongwen Xu -
2022 : Visual Imitation Learning with Patch Rewards »
Minghuan Liu · Tairan He · Weinan Zhang · Shuicheng Yan · Zhongwen Xu -
2022 : PatchBlender: A Motion Prior for Video Transformers »
Gabriele Prato · Yale Song · Janarthanan Rajendran · R Devon Hjelm · Neel Joshi · Sarath Chandar -
2022 Poster: EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine »
Jiayi Weng · Min Lin · Shengyi Huang · Bo Liu · Denys Makoviichuk · Viktor Makoviychuk · Zichen Liu · Yufan Song · Ting Luo · Yukun Jiang · Zhongwen Xu · Shuicheng Yan -
2021 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins -
2021 : Bootstrapped Meta-Learning »
Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Proper Value Equivalence »
Christopher Grimm · Andre Barreto · Greg Farquhar · David Silver · Satinder Singh -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Learning State Representations from Random Deep Action-conditional Predictions »
Zeyu Zheng · Vivek Veeriah · Risto Vuorio · Richard L Lewis · Satinder Singh -
2021 Poster: Self-Consistent Models and Values »
Greg Farquhar · Kate Baumli · Zita Marinho · Angelos Filos · Matteo Hessel · Hado van Hasselt · David Silver -
2021 Poster: Online and Offline Reinforcement Learning by Planning with a Learned Model »
Julian Schrittwieser · Thomas Hubert · Amol Mandhane · Mohammadamin Barekatain · Ioannis Antonoglou · David Silver -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Poster: Discovering Reinforcement Learning Algorithms »
Junhyuk Oh · Matteo Hessel · Wojciech Czarnecki · Zhongwen Xu · Hado van Hasselt · Satinder Singh · David Silver -
2020 Poster: Value-driven Hindsight Modelling »
Arthur Guez · Fabio Viola · Theophane Weber · Lars Buesing · Steven Kapturowski · Doina Precup · David Silver · Nicolas Heess -
2020 Poster: Meta-Gradient Reinforcement Learning with an Objective Discovered Online »
Zhongwen Xu · Hado van Hasselt · Matteo Hessel · Junhyuk Oh · Satinder Singh · David Silver -
2020 Poster: Meta-Learning Requires Meta-Augmentation »
Janarthanan Rajendran · Alexander Irpan · Eric Jang -
2020 Poster: Learning Retrospective Knowledge with Reverse Reinforcement Learning »
Shangtong Zhang · Vivek Veeriah · Shimon Whiteson -
2020 Poster: A Self-Tuning Actor-Critic Algorithm »
Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2020 Poster: Forethought and Hindsight in Credit Assignment »
Veronica Chelu · Doina Precup · Hado van Hasselt -
2020 Poster: The Value Equivalence Principle for Model-Based Reinforcement Learning »
Christopher Grimm · Andre Barreto · Satinder Singh · David Silver -
2019 : Late-Breaking Papers (Talks) »
David Silver · Simon Du · Matthias Plappert -
2019 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Joshua Achiam · Carlos Florensa · Christopher Grimm · Haoran Tang · Vivek Veeriah -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2019 Poster: The Option Keyboard: Combining Skills in Reinforcement Learning »
Andre Barreto · Diana Borsa · Shaobo Hou · Gheorghe Comanici · Eser Aygün · Philippe Hamel · Daniel Toyama · jonathan j hunt · Shibl Mourad · David Silver · Doina Precup -
2019 Poster: When to use parametric models in reinforcement learning? »
Hado van Hasselt · Matteo Hessel · John Aslanides -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 : David Silver »
David Silver -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Meta-Gradient Reinforcement Learning »
Zhongwen Xu · Hado van Hasselt · David Silver -
2018 Poster: On Learning Intrinsic Rewards for Policy Gradient Methods »
Zeyu Zheng · Junhyuk Oh · Satinder Singh -
2018 Poster: Completing State Representations using Spectral Learning »
Nan Jiang · Alex Kulesza · Satinder Singh -
2017 : Afternoon Panel discussion »
Brian Skyrms · Satinder Singh · Jacob Andreas -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : "Language Emergence as Boundedly Optimal Control" »
Satinder Singh -
2017 : Minimax-Regret Querying on Side Effects in Factored Markov Decision Processes »
Satinder Singh -
2017 : Deep Reinforcement Learning with Subgoals (David Silver) »
David Silver -
2017 : Invited Talk - Satindar Singh »
Satinder Singh -
2017 Symposium: Deep Reinforcement Learning »
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft -
2017 Poster: Repeated Inverse Reinforcement Learning »
Kareem Amin · Nan Jiang · Satinder Singh -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Poster: A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning »
Marc Lanctot · Vinicius Zambaldi · Audrunas Gruslys · Angeliki Lazaridou · Karl Tuyls · Julien Perolat · David Silver · Thore Graepel -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Spotlight: Repeated Inverse Reinforcement Learning »
Kareem Amin · Nan Jiang · Satinder Singh -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Value Prediction Network »
Junhyuk Oh · Satinder Singh · Honglak Lee -
2016 Workshop: Deep Reinforcement Learning »
David Silver · Satinder Singh · Pieter Abbeel · Peter Chen -
2016 Poster: Learning values across many orders of magnitude »
Hado van Hasselt · Arthur Guez · Arthur Guez · Matteo Hessel · Volodymyr Mnih · David Silver -
2015 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · John Schulman · Satinder Singh · David Silver -
2015 Poster: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Spotlight: Action-Conditional Video Prediction using Deep Networks in Atari Games »
Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Poster: Bayes-Adaptive Simulation-based Search with Value Function Approximation »
Arthur Guez · Nicolas Heess · David Silver · Peter Dayan -
2014 Poster: Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning »
Xiaoxiao Guo · Satinder Singh · Honglak Lee · Richard L Lewis · Xiaoshi Wang -
2014 Poster: Weighted importance sampling for off-policy learning with linear function approximation »
Rupam Mahmood · Hado P van Hasselt · Richard Sutton -
2013 Poster: Reward Mapping for Transfer in Long-Lived Agents »
Xiaoxiao Guo · Satinder Singh · Richard L Lewis -
2013 Session: Oral Session 9 »
Satinder Singh -
2012 Poster: Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search »
Arthur Guez · David Silver · Peter Dayan -
2010 Poster: Double Q-learning »
Hado P van Hasselt -
2010 Poster: Monte-Carlo Planning in Large POMDPs »
David Silver · Joel Veness -
2010 Poster: Reward Design via Online Gradient Ascent »
Jonathan D Sorg · Satinder Singh · Richard L Lewis -
2009 Poster: Bootstrapping from Game Tree Search »
Joel Veness · David Silver · William Uther · Alan Blair -
2009 Oral: Bootstrapping from Game Tree Search »
Joel Veness · David Silver · William Uther · Alan Blair -
2009 Poster: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2009 Spotlight: Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation »
Hamid R Maei · Csaba Szepesvari · Shalabh Batnaghar · Doina Precup · David Silver · Richard Sutton -
2008 Poster: Simple Local Models for Complex Dynamical Systems »
Erik Talvitie · Satinder Singh -
2008 Oral: Simple Local Models for Complex Dynamical Systems »
Erik Talvitie · Satinder Singh -
2007 Oral: Exponential Family Predictive Representations of State »
David Wingate · Satinder Singh -
2007 Poster: Exponential Family Predictive Representations of State »
David Wingate · Satinder Singh