Timezone: »

 
Poster
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco Cohen · Mario Geiger · Maurice Weiler

Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #129

We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant maps between spaces of fields. The theory enables a systematic classification of all existing G-CNNs in terms of their symmetry group, base space, and field type. We also answer a fundamental question: what is the most general kind of equivariant linear map between feature spaces (fields) of given types? We show that such maps correspond one-to-one with generalized convolutions with an equivariant kernel, and characterize the space of such kernels.

Author Information

Taco Cohen (Qualcomm AI Research)

Taco Cohen is a machine learning research scientist at Qualcomm AI Research in Amsterdam and a PhD student at the University of Amsterdam, supervised by prof. Max Welling. He was a co-founder of Scyfer, a company focussed on active deep learning, acquired by Qualcomm in 2017. He holds a BSc in theoretical computer science from Utrecht University and a MSc in artificial intelligence from the University of Amsterdam (both cum laude). His research is focussed on understanding and improving deep representation learning, in particular learning of equivariant and disentangled representations, data-efficient deep learning, learning on non-Euclidean domains, and applications of group representation theory and non-commutative harmonic analysis, as well as deep learning based source compression. He has done internships at Google Deepmind (working with Geoff Hinton) and OpenAI. He received the 2014 University of Amsterdam thesis prize, a Google PhD Fellowship, ICLR 2018 best paper award for “Spherical CNNs”, and was named one of 35 innovators under 35 in Europe by MIT in 2018.

Mario Geiger (EPFL)
Maurice Weiler (University of Amsterdam)

More from the Same Authors