Timezone: »
In this paper, we provide a method to learn the directed structure of a Bayesian network using data. The data is accessed by making conditional probability queries to a black-box model. We introduce a notion of simplicity of representation of conditional probability tables for the nodes in the Bayesian network, that we call `low rankness''. We connect this notion to the Fourier transformation of real valued set functions and propose a method which learns the exact directed structure of a
low rank` Bayesian network using very few queries. We formally prove that our method correctly recovers the true directed structure, runs in polynomial time and only needs polynomial samples with respect to the number of nodes. We also provide further improvements in efficiency if we have access to some observational data.
Author Information
Adarsh Barik (Purdue University)
Jean Honorio (Purdue University)
More from the Same Authors
-
2021 Spotlight: Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem »
Adarsh Barik · Jean Honorio -
2021 Poster: Inverse Reinforcement Learning in a Continuous State Space with Formal Guarantees »
Gregory Dexter · Kevin Bello · Jean Honorio -
2021 Poster: Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem »
Adarsh Barik · Jean Honorio -
2020 Poster: Fairness constraints can help exact inference in structured prediction »
Kevin Bello · Jean Honorio -
2019 Poster: On the Correctness and Sample Complexity of Inverse Reinforcement Learning »
Abi Komanduru · Jean Honorio -
2019 Poster: Exact inference in structured prediction »
Kevin Bello · Jean Honorio -
2018 Poster: Learning latent variable structured prediction models with Gaussian perturbations »
Kevin Bello · Jean Honorio -
2018 Poster: Information-theoretic Limits for Community Detection in Network Models »
Chuyang Ke · Jean Honorio -
2018 Poster: Computationally and statistically efficient learning of causal Bayes nets using path queries »
Kevin Bello · Jean Honorio -
2017 Poster: Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity »
Asish Ghoshal · Jean Honorio