Timezone: »

 
Poster
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration
Robert Kleinberg · Kevin Leyton-Brown · Brendan Lucier · Devon Graham

Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #34

Algorithm configuration methods optimize the performance of a parameterized heuristic algorithm on a given distribution of problem instances. Recent work introduced an algorithm configuration procedure (Structured Procrastination'') that provably achieves near optimal performance with high probability and with nearly minimal runtime in the worst case. It also offers an anytime property: it keeps tightening its optimality guarantees the longer it is run. Unfortunately, Structured Procrastination is not adaptive to characteristics of the parameterized algorithm: it treats every input like the worst case. Follow-up work (LeapsAndBounds'') achieves adaptivity but trades away the anytime property. This paper introduces a new algorithm, ``Structured Procrastination with Confidence'', that preserves the near-optimality and anytime properties of Structured Procrastination while adding adaptivity. In particular, the new algorithm will perform dramatically faster in settings where many algorithm configurations perform poorly. We show empirically both that such settings arise frequently in practice and that the anytime property is useful for finding good configurations quickly.

Author Information

Robert Kleinberg (Cornell University)
Kevin Leyton-Brown (University of British Columbia)
Brendan Lucier (Microsoft Research)
Devon Graham (University of British Columbia)

More from the Same Authors

  • 2022 Poster: Non-monotonic Resource Utilization in the Bandits with Knapsacks Problem »
    Raunak Kumar · Robert Kleinberg
  • 2020 Poster: Exemplar Guided Active Learning »
    Jason Hartford · Kevin Leyton-Brown · Hadas Raviv · Dan Padnos · Shahar Lev · Barak Lenz
  • 2020 Poster: ImpatientCapsAndRuns: Approximately Optimal Algorithm Configuration from an Infinite Pool »
    Gellert Weisz · András György · Wei-I Lin · Devon Graham · Kevin Leyton-Brown · Csaba Szepesvari · Brendan Lucier
  • 2019 : Lunch + Poster Session »
    Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans
  • 2017 Poster: Robust Optimization for Non-Convex Objectives »
    Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis
  • 2017 Oral: Robust Optimization for Non-Convex Objectives »
    Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis
  • 2016 Poster: Deep Learning for Predicting Human Strategic Behavior »
    Jason Hartford · James R Wright · Kevin Leyton-Brown
  • 2016 Oral: Deep Learning for Predicting Human Strategic Behavior »
    Jason Hartford · James R Wright · Kevin Leyton-Brown
  • 2010 Poster: Bayesian Action-Graph Games »
    Albert Xin Jiang · Kevin Leyton-Brown