`

Timezone: »

 
Poster
Unlocking Fairness: a Trade-off Revisited
Michael Wick · Swetasudha Panda · Jean-Baptiste Tristan

Thu Dec 12 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #119

The prevailing wisdom is that a model's fairness and its accuracy are in tension with one another. However, there is a pernicious {\em modeling-evaluating dualism} bedeviling fair machine learning in which phenomena such as label bias are appropriately acknowledged as a source of unfairness when designing fair models, only to be tacitly abandoned when evaluating them. We investigate fairness and accuracy, but this time under a variety of controlled conditions in which we vary the amount and type of bias. We find, under reasonable assumptions, that the tension between fairness and accuracy is illusive, and vanishes as soon as we account for these phenomena during evaluation. Moreover, our results are consistent with an opposing conclusion: fairness and accuracy are sometimes in accord. This raises the question, {\em might there be a way to harness fairness to improve accuracy after all?} Since most notions of fairness are with respect to the model's predictions and not the ground truth labels, this provides an opportunity to see if we can improve accuracy by harnessing appropriate notions of fairness over large quantities of {\em unlabeled} data with techniques like posterior regularization and generalized expectation. Indeed, we find that semi-supervision not only improves fairness, but also accuracy and has advantages over existing in-processing methods that succumb to selection bias on the training set.

Author Information

Michael Wick (Oracle Labs)
Swetasudha Panda (Oracle Labs)
Jean-Baptiste Tristan (Oracle Labs)

More from the Same Authors

  • 2019 : Poster Session »
    Nathalie Baracaldo Angel · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu
  • 2017 : Posters and Coffee »
    Jean-Baptiste Tristan · Yunseong Lee · Anna Veronika Dorogush · Shohei Hido · Michael Terry · Mennatullah Siam · Hidemoto Nakada · Cody Coleman · Jung-Woo Ha · Hao Zhang · Adam Stooke · Chen Meng · Christopher Kappler · Lane Schwartz · Christopher Olston · Sebastian Schelter · Minmin Sun · Daniel Kang · Waldemar Hummer · Jichan Chung · Tim Kraska · Kannan Ramchandran · Nick Hynes · Christoph Boden · Donghyun Kwak
  • 2014 Poster: Augur: Data-Parallel Probabilistic Modeling »
    Jean-Baptiste Tristan · Daniel Huang · Joseph Tassarotti · Adam Pocock · Stephen Green · Guy L Steele
  • 2014 Spotlight: Augur: Data-Parallel Probabilistic Modeling »
    Jean-Baptiste Tristan · Daniel Huang · Joseph Tassarotti · Adam Pocock · Stephen Green · Guy L Steele
  • 2011 Poster: Query-Aware MCMC »
    Michael Wick · Andrew McCallum
  • 2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
    Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum
  • 2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
    Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum