Timezone: »
Knowledge graph reasoning, which aims at predicting missing facts through reasoning with observed facts, is critical for many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle uncertainty. However, the inference in MLNs is usually very difficult due to the complicated graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient. However, they are unable to leverage domain knowledge. In this paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets by using a Markov logic network with first-order logic, which can be efficiently optimized with the variational EM algorithm. Specifically, in the E-step, a knowledge graph embedding model is used for inferring the missing triplets, while in the M-step, the weights of the logic rules are updated according to both the observed and predicted triplets. Experiments on multiple knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.
Author Information
Meng Qu (Mila)
Jian Tang (Mila)
More from the Same Authors
-
2021 Spotlight: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 : Multi-task Learning with Domain Knowledge for Molecular Property Prediction »
Shengchao Liu · Meng Qu · Zuobai Zhang · Jian Tang -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2021 : AI X Molecule »
Jian Tang -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 Poster: How to transfer algorithmic reasoning knowledge to learn new algorithms? »
Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang -
2021 Poster: Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction »
Zhaocheng Zhu · Zuobai Zhang · Louis-Pascal Xhonneux · Jian Tang -
2021 Poster: Predicting Molecular Conformation via Dynamic Graph Score Matching »
Shitong Luo · Chence Shi · Minkai Xu · Jian Tang -
2021 Poster: Joint Modeling of Visual Objects and Relations for Scene Graph Generation »
Minghao Xu · Meng Qu · Bingbing Ni · Jian Tang -
2020 Poster: Graph Policy Network for Transferable Active Learning on Graphs »
Shengding Hu · Zheng Xiong · Meng Qu · Xingdi Yuan · Marc-Alexandre Côté · Zhiyuan Liu · Jian Tang -
2020 Poster: Towards Interpretable Natural Language Understanding with Explanations as Latent Variables »
Wangchunshu Zhou · Jinyi Hu · Hanlin Zhang · Xiaodan Liang · Maosong Sun · Chenyan Xiong · Jian Tang -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 Poster: vGraph: A Generative Model for Joint Community Detection and Node Representation Learning »
Fan-Yun Sun · Meng Qu · Jordan Hoffmann · Chin-Wei Huang · Jian Tang