Timezone: »
Deep learning has proven to yield fast and accurate predictions of quantum-chemical properties to accelerate the discovery of novel molecules and materials. As an exhaustive exploration of the vast chemical space is still infeasible, we require generative models that guide our search towards systems with desired properties. While graph-based models have previously been proposed, they are restricted by a lack of spatial information such that they are unable to recognize spatial isomerism and non-bonded interactions. Here, we introduce a generative neural network for 3d point sets that respects the rotational invariance of the targeted structures. We apply it to the generation of molecules and demonstrate its ability to approximate the distribution of equilibrium structures using spatial metrics as well as established measures from chemoinformatics. As our model is able to capture the complex relationship between 3d geometry and electronic properties, we bias the distribution of the generator towards molecules with a small HOMO-LUMO gap - an important property for the design of organic solar cells.
Author Information
Niklas Gebauer (Technische Universität Berlin)
Michael Gastegger (Technische Universität Berlin)
Kristof Schütt (TU Berlin)
More from the Same Authors
-
2021 Poster: SE(3)-equivariant prediction of molecular wavefunctions and electronic densities »
Oliver Unke · Mihail Bogojeski · Michael Gastegger · Mario Geiger · Tess Smidt · Klaus-Robert Müller -
2020 : Invited Talk: Klaus Robert-Müller & Kristof Schütt: Machine Learning meets Quantum Chemistry »
Klaus-Robert Müller · Kristof Schütt -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 Poster: SchNet: A continuous-filter convolutional neural network for modeling quantum interactions »
Kristof Schütt · Pieter-Jan Kindermans · Huziel Enoc Sauceda Felix · Stefan Chmiela · Alexandre Tkatchenko · Klaus-Robert Müller -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha