Timezone: »
Magnetoencephalography and electroencephalography (M/EEG) can reveal neuronal dynamics non-invasively in real-time and are therefore appreciated methods in medicine and neuroscience. Recent advances in modeling brain-behavior relationships have highlighted the effectiveness of Riemannian geometry for summarizing the spatially correlated time-series from M/EEG in terms of their covariance. However, after artefact-suppression, M/EEG data is often rank deficient which limits the application of Riemannian concepts. In this article, we focus on the task of regression with rank-reduced covariance matrices. We study two Riemannian approaches that vectorize the M/EEG covariance between sensors through projection into a tangent space. The Wasserstein distance readily applies to rank-reduced data but lacks affine-invariance. This can be overcome by finding a common subspace in which the covariance matrices are full rank, enabling the affine-invariant geometric distance. We investigated the implications of these two approaches in synthetic generative models, which allowed us to control estimation bias of a linear model for prediction. We show that Wasserstein and geometric distances allow perfect out-of-sample prediction on the generative models. We then evaluated the methods on real data with regard to their effectiveness in predicting age from M/EEG covariance matrices. The findings suggest that the data-driven Riemannian methods outperform different sensor-space estimators and that they get close to the performance of biophysics-driven source-localization model that requires MRI acquisitions and tedious data processing. Our study suggests that the proposed Riemannian methods can serve as fundamental building-blocks for automated large-scale analysis of M/EEG.
Author Information
David Sabbagh (INRIA)
Pierre Ablin (INRIA)
Gael Varoquaux (Parietal Team, INRIA)
Alexandre Gramfort (INRIA)
Denis A. Engemann (INRIA Saclay)
More from the Same Authors
-
2021 Spotlight: What’s a good imputation to predict with missing values? »
Marine Le Morvan · Julie Josse · Erwan Scornet · Gael Varoquaux -
2021 : AI as statistical methods for imperfect theories »
Gael Varoquaux -
2021 : Variable Importance on Medical Images and Socio-Demographic Data »
Ahmad CHAMMA · Denis A. Engemann · Bertrand Thirion -
2023 Poster: How to Scale Your EMA »
Dan Busbridge · Jason Ramapuram · Pierre Ablin · Tatiana Likhomanenko · Eeshan Gunesh Dhekane · Xavier Suau Cuadros · Russell Webb -
2023 Workshop: Table Representation Learning Workshop »
Madelon Hulsebos · Bojan Karlaš · Haoyu Dong · Gael Varoquaux · Laurel Orr · Pengcheng Yin -
2022 Poster: Benchopt: Reproducible, efficient and collaborative optimization benchmarks »
Thomas Moreau · Mathurin Massias · Alexandre Gramfort · Pierre Ablin · Pierre-Antoine Bannier · Benjamin Charlier · Mathieu Dagréou · Tom Dupre la Tour · Ghislain DURIF · Cassio F. Dantas · Quentin Klopfenstein · Johan Larsson · En Lai · Tanguy Lefort · Benoît Malézieux · Badr MOUFAD · Binh T. Nguyen · Alain Rakotomamonjy · Zaccharie Ramzi · Joseph Salmon · Samuel Vaiter -
2022 Poster: A framework for bilevel optimization that enables stochastic and global variance reduction algorithms »
Mathieu Dagréou · Pierre Ablin · Samuel Vaiter · Thomas Moreau -
2022 Poster: Why do tree-based models still outperform deep learning on typical tabular data? »
Leo Grinsztajn · Edouard Oyallon · Gael Varoquaux -
2022 Poster: Do Residual Neural Networks discretize Neural Ordinary Differential Equations? »
Michael Sander · Pierre Ablin · Gabriel Peyré -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: What’s a good imputation to predict with missing values? »
Marine Le Morvan · Julie Josse · Erwan Scornet · Gael Varoquaux -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Oral: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 Poster: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso »
Quentin Bertrand · Mathurin Massias · Alexandre Gramfort · Joseph Salmon -
2019 Poster: Learning step sizes for unfolded sparse coding »
Pierre Ablin · Thomas Moreau · Mathurin Massias · Alexandre Gramfort -
2019 Poster: Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing »
Meyer Scetbon · Gael Varoquaux -
2019 Spotlight: Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing »
Meyer Scetbon · Gael Varoquaux -
2018 Poster: Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals »
Tom Dupré la Tour · Thomas Moreau · Mainak Jas · Alexandre Gramfort -
2017 : Scikit-learn & nilearn: Democratisation of machine learning for brain imaging (INRIA) »
Gael Varoquaux -
2017 : Invited Talk: "Tales from fMRI: Learning from limited labeled data" »
Gael Varoquaux -
2017 Poster: Learning Neural Representations of Human Cognition across Many fMRI Studies »
Arthur Mensch · Julien Mairal · Danilo Bzdok · Bertrand Thirion · Gael Varoquaux -
2016 Poster: GAP Safe Screening Rules for Sparse-Group Lasso »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2016 Poster: Learning brain regions via large-scale online structured sparse dictionary learning »
Elvis DOHMATOB · Arthur Mensch · Gael Varoquaux · Bertrand Thirion -
2015 Poster: GAP Safe screening rules for sparse multi-task and multi-class models »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2015 Poster: Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data »
Danilo Bzdok · Michael Eickenberg · Olivier Grisel · Bertrand Thirion · Gael Varoquaux -
2013 Poster: Mapping paradigm ontologies to and from the brain »
Yannick Schwartz · Bertrand Thirion · Gael Varoquaux