Timezone: »
Simulation-to-real domain adaptation for semantic segmentation has been actively studied for various applications such as autonomous driving. Existing methods mainly focus on a single-source setting, which cannot easily handle a more practical scenario of multiple sources with different distributions. In this paper, we propose to investigate multi-source domain adaptation for semantic segmentation. Specifically, we design a novel framework, termed Multi-source Adversarial Domain Aggregation Network (MADAN), which can be trained in an end-to-end manner. First, we generate an adapted domain for each source with dynamic semantic consistency while aligning at the pixel-level cycle-consistently towards the target. Second, we propose sub-domain aggregation discriminator and cross-domain cycle discriminator to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and target domain while training the segmentation network. Extensive experiments from synthetic GTA and SYNTHIA to real Cityscapes and BDDS datasets demonstrate that the proposed MADAN model outperforms state-of-the-art approaches. Our source code is released at: https://github.com/Luodian/MADAN.
Author Information
Sicheng Zhao (University of California Berkeley)
Bo Li (Harbin Institute of Technology)
Xiangyu Yue (UC Berkeley)
Yang Gu (Didi chuxing)
Pengfei Xu (Didi Chuxing)
Runbo Hu (DiDi Chuxing)
Hua Chai (Didi Chuxing)
Kurt Keutzer (EECS, UC Berkeley)
More from the Same Authors
-
2021 : Domain-agnostic Test-time Adaptation by Prototypical Training with Auxiliary Data »
Qilong Wu · Xiangyu Yue · Alberto Sangiovanni-Vincentelli -
2020 Poster: Boundary thickness and robustness in learning models »
Yaoqing Yang · Rajiv Khanna · Yaodong Yu · Amir Gholami · Kurt Keutzer · Joseph Gonzalez · Kannan Ramchandran · Michael Mahoney -
2020 Poster: HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks »
Zhen Dong · Zhewei Yao · Daiyaan Arfeen · Amir Gholami · Michael Mahoney · Kurt Keutzer -
2019 Poster: ANODEV2: A Coupled Neural ODE Framework »
Tianjun Zhang · Zhewei Yao · Amir Gholami · Joseph Gonzalez · Kurt Keutzer · Michael Mahoney · George Biros -
2018 : Prof. Kurt Keutzer »
Kurt Keutzer -
2018 Poster: Hessian-based Analysis of Large Batch Training and Robustness to Adversaries »
Zhewei Yao · Amir Gholami · Qi Lei · Kurt Keutzer · Michael Mahoney -
2016 : Kurt Keutzer: High-Performance Deep Learning »
Kurt Keutzer