Timezone: »
Poster
Tensor Monte Carlo: Particle Methods for the GPU era
Laurence Aitchison
Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #193
Multi-sample, importance-weighted variational autoencoders (IWAE) give tighter bounds and more accurate uncertainty estimates than variational autoencoders (VAEs) trained with a standard single-sample objective. However, IWAEs scale poorly: as the latent dimensionality grows, they require exponentially many samples to retain the benefits of importance weighting. While sequential Monte-Carlo (SMC) can address this problem, it is prohibitively slow because the resampling step imposes sequential structure which cannot be parallelised, and moreover, resampling is non-differentiable which is problematic when learning approximate posteriors. To address these issues, we developed tensor Monte-Carlo (TMC) which gives exponentially many importance samples by separately drawing $K$ samples for each of the $n$ latent variables, then averaging over all $K^n$ possible combinations. While the sum over exponentially many terms might seem to be intractable, in many cases it can be computed efficiently as a series of tensor inner-products. We show that TMC is superior to IWAE on a generative model with multiple stochastic layers trained on the MNIST handwritten digit database, and we show that TMC can be combined with standard variance reduction techniques.
Author Information
Laurence Aitchison (University of Cambridge)
More from the Same Authors
-
2022 : Random initialisations performing above chance and how to find them »
Frederik Benzing · Simon Schug · Robert Meier · Johannes von Oswald · Yassir Akram · Nicolas Zucchet · Laurence Aitchison · Angelika Steger -
2021 Poster: A variational approximate posterior for the deep Wishart process »
Sebastian Ober · Laurence Aitchison -
2020 Poster: Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods »
Laurence Aitchison -
2017 Oral: Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit »
Laurence Aitchison · Lloyd Russell · Adam Packer · Jinyao Yan · Philippe Castonguay · Michael Hausser · Srinivas C Turaga -
2017 Poster: Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit »
Laurence Aitchison · Lloyd Russell · Adam Packer · Jinyao Yan · Philippe Castonguay · Michael Hausser · Srinivas C Turaga -
2014 Poster: Fast Sampling-Based Inference in Balanced Neuronal Networks »
Guillaume Hennequin · Laurence Aitchison · Mate Lengyel