Timezone: »
Poster
First-order methods almost always avoid saddle points: The case of vanishing step-sizes
Ioannis Panageas · Georgios Piliouras · Xiao Wang
Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #201
In a series of papers [Lee et al 2016], [Panageas and Piliouras 2017], [Lee et al 2019], it was established that some of the most commonly used first order methods almost surely (under random initializations) and with step-size being small enough, avoid strict saddle points, as long as the objective function $f$ is $C^2$ and has Lipschitz gradient. The key observation was that first order methods can be studied from a dynamical systems perspective, in which instantiations of Center-Stable manifold theorem allow for a global analysis. The results of the aforementioned papers were limited to the case where the step-size $\alpha$ is constant, i.e., does not depend on time (and typically bounded from the inverse of the Lipschitz constant of the gradient of $f$). It remains an open question whether or not the results still hold when the step-size is time dependent and vanishes with time.
In this paper, we resolve this question on the affirmative for gradient descent, mirror descent, manifold descent and proximal point. The main technical challenge is that the induced (from each first order method) dynamical system is time non-homogeneous and the stable manifold theorem is not applicable in its classic form. By exploiting the dynamical systems structure of the aforementioned first order methods, we are able to prove a stable manifold theorem that is applicable to time non-homogeneous dynamical systems and generalize the results in [Lee et al 2019] for time dependent step-sizes.
Author Information
Ioannis Panageas (SUTD)
Georgios Piliouras (Singapore University of Technology and Design)
Xiao Wang (Singapore university of technology and design)
More from the Same Authors
-
2021 Spotlight: Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Georgios Piliouras · Kelly Spendlove -
2021 : Learning in Matrix Games can be Arbitrarily Complex »
Gabriel Andrade · Rafael Frongillo · Georgios Piliouras -
2021 : Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games »
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras -
2021 : Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Kelly Spendlove · Georgios Piliouras -
2021 : Learning in Matrix Games can be Arbitrarily Complex »
Gabriel Andrade · Rafael Frongillo · Georgios Piliouras -
2021 : Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games »
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras -
2021 : Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Kelly Spendlove · Georgios Piliouras -
2023 Poster: The Best of Both Worlds in Network Population Games: Reaching Consensus and Convergence to Equilibrium »
Shuyue Hu · Harold Soh · Georgios Piliouras -
2023 Poster: Alternation makes the adversary weaker in two-player games »
Volkan Cevher · Ashok Cutkosky · Ali Kavis · Georgios Piliouras · Stratis Skoulakis · Luca Viano -
2023 Poster: On the Last-iterate Convergence in Time-varying Zero-sum Games: Extra Gradient Succeeds where Optimism Fails »
Yi Feng · Hu Fu · Qun Hu · Ping Li · Ioannis Panageas · bo peng · Xiao Wang -
2023 Poster: Exploiting hidden structures in non-convex games for convergence to Nash equilibrium »
Iosif Sakos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos · Georgios Piliouras -
2022 Poster: Alternating Mirror Descent for Constrained Min-Max Games »
Andre Wibisono · Molei Tao · Georgios Piliouras -
2022 Poster: Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update »
Georgios Piliouras · Ryann Sim · Stratis Skoulakis -
2022 Poster: Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & Recurrence »
Rahul Jain · Georgios Piliouras · Ryann Sim -
2021 Poster: Solving Min-Max Optimization with Hidden Structure via Gradient Descent Ascent »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2021 Poster: Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Georgios Piliouras · Kelly Spendlove -
2021 Poster: Online Learning in Periodic Zero-Sum Games »
Tanner Fiez · Ryann Sim · Stratis Skoulakis · Georgios Piliouras · Lillian Ratliff -
2020 Poster: Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev »
Xiao Wang · Qi Lei · Ioannis Panageas -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2017 Poster: Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos »
Gerasimos Palaiopanos · Ioannis Panageas · Georgios Piliouras -
2017 Spotlight: Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos »
Gerasimos Palaiopanos · Ioannis Panageas · Georgios Piliouras