Timezone: »
Bad training data would challenge the learning model from understanding the underlying data-generating scheme, which then increases the difficulty in achieving satisfactory performance on unseen test data. We suppose the real data distribution lies in a distribution set supported by the empirical distribution of bad data. A worst-case formulation can be developed over this distribution set, and then be interpreted as a generation task in an adversarial manner. The connections and differences between GANs and our framework have been thoroughly discussed. We further theoretically show the influence of this generation task on learning from bad data and reveal its connection with a data-dependent regularization. Given different distance measures (\eg, Wasserstein distance or JS divergence) of distributions, we can derive different objective functions for the problem. Experimental results on different kinds of bad training data demonstrate the necessity and effectiveness of the proposed method.
Author Information
Tianyu Guo (Peking University)
Chang Xu (University of Sydney)
Boxin Shi (Peking University)
Chao Xu (Peking University)
Dacheng Tao (University of Sydney)
More from the Same Authors
-
2020 Meetup: MeetUp: Sydney Australia »
Chang Xu -
2021 Meetup: Sydney, Australia »
Chang Xu -
2023 Poster: Stable Diffusion is Unstable »
Chengbin Du · Yanxi Li · Zhongwei Qiu · Chang Xu -
2023 Poster: Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models »
Yichao Cao · Qingfei Tang · Xiu Su · Song Chen · Shan You · Chang Xu · Xiaobo Lu -
2023 Poster: Beyond Pretrained Features: Noisy Image Modeling Provides Adversarial Defense »
Zunzhi You · Daochang Liu · Bohyung Han · Chang Xu -
2023 Poster: Rethinking Conditional Diffusion Sampling with Progressive Guidance »
Anh-Dung Dinh · Daochang Liu · Chang Xu -
2023 Poster: Slow and Weak Attractor Computation Embedded in Fast and Strong E-I Balanced Neural Dynamics »
Xiaohan Lin · Liyuan Li · Boxin Shi · Tiejun Huang · Yuanyuan Mi · Si Wu -
2023 Poster: Contrastive Sampling Chains in Diffusion Models »
Junyu Zhang · Daochang Liu · Shichao Zhang · Chang Xu -
2023 Poster: Towards Higher Ranks via Adversarial Weight Pruning »
Yuchuan Tian · Hanting Chen · Tianyu Guo · Chao Xu · Yunhe Wang -
2023 Poster: L-CAD: Language-based Colorization with Any-level Descriptions »
zheng chang · Shuchen Weng · Peixuan Zhang · Yu Li · Si Li · Boxin Shi -
2023 Poster: Adversarial Robustness through Random Weight Sampling »
Yanxiang Ma · Minjing Dong · Chang Xu -
2023 Poster: When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Segmentation »
Xinhong Ma · Yiming Wang · Hao Liu · Tianyu Guo · Yunhe Wang -
2023 Poster: LuminAIRe: Illumination-Aware Conditional Image Repainting for Lighting-Realistic Generation »
Jiajun Tang · Haofeng Zhong · Shuchen Weng · Boxin Shi -
2023 Poster: One-for-All: Bridge the Gap Between Heterogeneous Architectures in Knowledge Distillation »
Zhiwei Hao · Jianyuan Guo · Kai Han · Yehui Tang · Han Hu · Yunhe Wang · Chang Xu -
2023 Poster: PUe: Biased Positive-Unlabeled LearningEnhancement by Causal Inference »
Xutao Wang · Hanting Chen · Tianyu Guo · Yunhe Wang -
2023 Poster: Revisit the Power of Vanilla Knowledge Distillation: from Small Scale to Large Scale »
Zhiwei Hao · Jianyuan Guo · Kai Han · Han Hu · Chang Xu · Yunhe Wang -
2023 Poster: Knowledge Diffusion for Distillation »
Tao Huang · Yuan Zhang · Mingkai Zheng · Shan You · Fei Wang · Chen Qian · Chang Xu -
2022 Spotlight: Neural Transmitted Radiance Fields »
Chengxuan Zhu · Renjie Wan · Boxin Shi -
2022 Spotlight: GhostNetV2: Enhance Cheap Operation with Long-Range Attention »
Yehui Tang · Kai Han · Jianyuan Guo · Chang Xu · Chao Xu · Yunhe Wang -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Knowledge Distillation from A Stronger Teacher »
Tao Huang · Shan You · Fei Wang · Chen Qian · Chang Xu -
2022 Poster: GhostNetV2: Enhance Cheap Operation with Long-Range Attention »
Yehui Tang · Kai Han · Jianyuan Guo · Chang Xu · Chao Xu · Yunhe Wang -
2022 Poster: Neural Transmitted Radiance Fields »
Chengxuan Zhu · Renjie Wan · Boxin Shi -
2022 Poster: Searching for Better Spatio-temporal Alignment in Few-Shot Action Recognition »
Yichao Cao · Xiu Su · Qingfei Tang · Shan You · Xiaobo Lu · Chang Xu -
2022 Poster: Random Normalization Aggregation for Adversarial Defense »
Minjing Dong · Xinghao Chen · Yunhe Wang · Chang Xu -
2021 Poster: Learning to dehaze with polarization »
Chu Zhou · Minggui Teng · Yufei Han · Chao Xu · Boxin Shi -
2021 Poster: Augmented Shortcuts for Vision Transformers »
Yehui Tang · Kai Han · Chang Xu · An Xiao · Yiping Deng · Chao Xu · Yunhe Wang -
2020 Poster: SCOP: Scientific Control for Reliable Neural Network Pruning »
Yehui Tang · Yunhe Wang · Yixing Xu · Dacheng Tao · Chunjing XU · Chao Xu · Chang Xu -
2020 Poster: Kernel Based Progressive Distillation for Adder Neural Networks »
Yixing Xu · Chang Xu · Xinghao Chen · Wei Zhang · Chunjing XU · Yunhe Wang -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Adapting Neural Architectures Between Domains »
Yanxi Li · Zhaohui Yang · Yunhe Wang · Chang Xu -
2020 Poster: Auto Learning Attention »
Benteng Ma · Jing Zhang · Yong Xia · Dacheng Tao -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Spotlight: Kernel Based Progressive Distillation for Adder Neural Networks »
Yixing Xu · Chang Xu · Xinghao Chen · Wei Zhang · Chunjing XU · Yunhe Wang -
2020 Poster: Group Contextual Encoding for 3D Point Clouds »
Xu Liu · Chengtao Li · Jian Wang · Jingbo Wang · Boxin Shi · Xiaodong He -
2020 Poster: UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging »
Chu Zhou · Hang Zhao · Jin Han · Chang Xu · Chao Xu · Tiejun Huang · Boxin Shi -
2020 Poster: Searching for Low-Bit Weights in Quantized Neural Networks »
Zhaohui Yang · Yunhe Wang · Kai Han · Chunjing XU · Chao Xu · Dacheng Tao · Chang Xu -
2020 Poster: Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning »
Huan Fu · Shunming Li · Rongfei Jia · Mingming Gong · Binqiang Zhao · Dacheng Tao -
2020 Poster: GPS-Net: Graph-based Photometric Stereo Network »
Zhuokun Yao · Kun Li · Ying Fu · Haofeng Hu · Boxin Shi -
2020 Poster: Video Frame Interpolation without Temporal Priors »
Youjian Zhang · Chaoyue Wang · Dacheng Tao -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2019 Poster: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Zhuozhuo Tu · Jingwei Zhang · Dacheng Tao -
2019 Poster: Reflection Separation using a Pair of Unpolarized and Polarized Images »
Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi -
2019 Spotlight: Reflection Separation using a Pair of Unpolarized and Polarized Images »
Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi -
2019 Spotlight: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Zhuozhuo Tu · Jingwei Zhang · Dacheng Tao -
2019 Poster: Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation »
Qiming ZHANG · Jing Zhang · Wei Liu · Dacheng Tao -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2019 Poster: Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge »
Tingting Qiao · Jing Zhang · Duanqing Xu · Dacheng Tao -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao -
2019 Poster: Positive-Unlabeled Compression on the Cloud »
Yixing Xu · Yunhe Wang · Hanting Chen · Kai Han · Chunjing XU · Dacheng Tao · Chang Xu -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Dual Swap Disentangling »
Zunlei Feng · Xinchao Wang · Chenglong Ke · An-Xiang Zeng · Dacheng Tao · Mingli Song -
2018 Poster: Learning Versatile Filters for Efficient Convolutional Neural Networks »
Yunhe Wang · Chang Xu · Chunjing XU · Chao Xu · Dacheng Tao -
2016 Poster: CNNpack: Packing Convolutional Neural Networks in the Frequency Domain »
Yunhe Wang · Chang Xu · Shan You · Dacheng Tao · Chao Xu