Timezone: »
Abstraction reasoning is a long-standing challenge in artificial intelligence. Recent studies suggest that many of the deep architectures that have triumphed over other domains failed to work well in abstract reasoning. In this paper, we first illustrate that one of the main challenges in such a reasoning task is the presence of distracting features, which requires the learning algorithm to leverage counter-evidence and to reject any of false hypothesis in order to learn the true patterns. We later show that carefully designed learning trajectory over different categories of training data can effectively boost learning performance by mitigating the impacts of distracting features. Inspired this fact, we propose feature robust abstract reasoning (FRAR) model, which consists of a reinforcement learning based teacher network to determine the sequence of training and a student network for predictions. Experimental results demonstrated strong improvements over baseline algorithms and we are able to beat the state-of-the-art models by 18.7\% in RAVEN dataset and 13.3\% in the PGM dataset.
Author Information
Kecheng Zheng (University of Science and Technology of China)
Zheng-Jun Zha (University of Science and Technology of China)
Wei Wei (Google Inc.)
More from the Same Authors
-
2022 Poster: Exploring Figure-Ground Assignment Mechanism in Perceptual Organization »
Wei Zhai · Yang Cao · Jing Zhang · Zheng-Jun Zha -
2022 Poster: Stochastic Window Transformer for Image Restoration »
Jie Xiao · Xueyang Fu · Feng Wu · Zheng-Jun Zha -
2022 Poster: Rank Diminishing in Deep Neural Networks »
Ruili Feng · Kecheng Zheng · Yukun Huang · Deli Zhao · Michael Jordan · Zheng-Jun Zha -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Stochastic Window Transformer for Image Restoration »
Jie Xiao · Xueyang Fu · Feng Wu · Zheng-Jun Zha -
2021 Poster: Low-Rank Subspaces in GANs »
Jiapeng Zhu · Ruili Feng · Yujun Shen · Deli Zhao · Zheng-Jun Zha · Jingren Zhou · Qifeng Chen -
2020 Poster: Hierarchical Granularity Transfer Learning »
Shaobo Min · Hongtao Xie · Hantao Yao · Xuran Deng · Zheng-Jun Zha · Yongdong Zhang -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: Learning Semantic-aware Normalization for Generative Adversarial Networks »
Heliang Zheng · Jianlong Fu · Yanhong Zeng · Jiebo Luo · Zheng-Jun Zha -
2020 Spotlight: Learning Semantic-aware Normalization for Generative Adversarial Networks »
Heliang Zheng · Jianlong Fu · Yanhong Zeng · Jiebo Luo · Zheng-Jun Zha -
2019 Poster: Learning Deep Bilinear Transformation for Fine-grained Image Representation »
Heliang Zheng · Jianlong Fu · Zheng-Jun Zha · Jiebo Luo -
2019 Poster: Meta Architecture Search »
Albert Shaw · Wei Wei · Weiyang Liu · Le Song · Bo Dai -
2018 : Posters 1 »
Wei Wei · Flavio Calmon · Travis Dick · Leilani Gilpin · Maroussia Lévesque · Malek Ben Salem · Michael Wang · Jack Fitzsimons · Dimitri Semenovich · Linda Gu · Nathaniel Fruchter