Timezone: »
Generative adversarial networks (GANs) generate data based on minimizing a divergence between two distributions. The choice of that divergence is therefore critical. We argue that the divergence must take into account the hypothesis set and the loss function used in a subsequent learning task, where the data generated by a GAN serves for training. Taking that structural information into account is also important to derive generalization guarantees. Thus, we propose to use the discrepancy measure, which was originally introduced for the closely related problem of domain adaptation and which precisely takes into account the hypothesis set and the loss function. We show that discrepancy admits favorable properties for training GANs and prove explicit generalization guarantees. We present efficient algorithms using discrepancy for two tasks: training a GAN directly, namely DGAN, and mixing previously trained generative models, namely EDGAN. Our experiments on toy examples and several benchmark datasets show that DGAN is competitive with other GANs and that EDGAN outperforms existing GAN ensembles, such as AdaGAN.
Author Information
Ben Adlam (Google)
Corinna Cortes (Google Research)
Mehryar Mohri (Courant Inst. of Math. Sciences & Google Research)
Ningshan Zhang (New York University)
More from the Same Authors
-
2020 Poster: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Spotlight: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Poster: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Poster: Adapting to Misspecification in Contextual Bandits »
Dylan Foster · Claudio Gentile · Mehryar Mohri · Julian Zimmert -
2020 Spotlight: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Poster: Understanding Double Descent Requires A Fine-Grained Bias-Variance Decomposition »
Ben Adlam · Jeffrey Pennington -
2020 Poster: Agnostic Learning with Multiple Objectives »
Corinna Cortes · Mehryar Mohri · Javier Gonzalvo · Dmitry Storcheus -
2020 Poster: Reinforcement Learning with Feedback Graphs »
Christoph Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2020 Poster: PAC-Bayes Learning Bounds for Sample-Dependent Priors »
Pranjal Awasthi · Satyen Kale · Stefani Karp · Mehryar Mohri -
2019 Poster: Bandits with Feedback Graphs and Switching Costs »
Raman Arora · Teodor Vanislavov Marinov · Mehryar Mohri -
2019 Poster: Regularized Gradient Boosting »
Corinna Cortes · Mehryar Mohri · Dmitry Storcheus -
2019 Poster: Hypothesis Set Stability and Generalization »
Dylan Foster · Spencer Greenberg · Satyen Kale · Haipeng Luo · Mehryar Mohri · Karthik Sridharan -
2018 Poster: Policy Regret in Repeated Games »
Raman Arora · Michael Dinitz · Teodor Vanislavov Marinov · Mehryar Mohri -
2018 Poster: Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses »
Corinna Cortes · Vitaly Kuznetsov · Mehryar Mohri · Dmitry Storcheus · Scott Yang -
2018 Poster: Algorithms and Theory for Multiple-Source Adaptation »
Judy Hoffman · Mehryar Mohri · Ningshan Zhang -
2017 Poster: Discriminative State Space Models »
Vitaly Kuznetsov · Mehryar Mohri -
2017 Poster: Online Learning with Transductive Regret »
Scott Yang · Mehryar Mohri -
2017 Poster: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2017 Spotlight: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2017 Spotlight: Online Learning with Transductive Regret »
Scott Yang · Mehryar Mohri -
2016 Poster: Structured Prediction Theory Based on Factor Graph Complexity »
Corinna Cortes · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang -
2016 Poster: Boosting with Abstention »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri -
2016 Poster: Optimistic Bandit Convex Optimization »
Scott Yang · Mehryar Mohri -
2016 Tutorial: Theory and Algorithms for Forecasting Non-Stationary Time Series »
Vitaly Kuznetsov · Mehryar Mohri -
2015 Poster: Revenue Optimization against Strategic Buyers »
Mehryar Mohri · Andres Munoz -
2015 Poster: Learning Theory and Algorithms for Forecasting Non-stationary Time Series »
Vitaly Kuznetsov · Mehryar Mohri -
2015 Oral: Learning Theory and Algorithms for Forecasting Non-stationary Time Series »
Vitaly Kuznetsov · Mehryar Mohri -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2014 Poster: Optimal Regret Minimization in Posted-Price Auctions with Strategic Buyers »
Mehryar Mohri · Andres Munoz -
2014 Poster: Multi-Class Deep Boosting »
Vitaly Kuznetsov · Mehryar Mohri · Umar Syed -
2014 Spotlight: Optimal Regret Minimization in Posted-Price Auctions with Strategic Buyers »
Mehryar Mohri · Andres Munoz -
2014 Session: Oral Session 6 »
Mehryar Mohri -
2014 Poster: Conditional Swap Regret and Conditional Correlated Equilibrium »
Mehryar Mohri · Scott Yang -
2013 Poster: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Spotlight: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Session: Oral Session 6 »
Corinna Cortes -
2012 Poster: Accuracy at the Top »
Stephen Boyd · Corinna Cortes · Mehryar Mohri · Ana Radovanovic -
2012 Poster: Spectral Learning of General Weighted Automata via Constrained Matrix Completion »
Borja Balle · Mehryar Mohri -
2012 Oral: Spectral Learning of General Weighted Automata via Constrained Matrix Completion »
Borja Balle · Mehryar Mohri -
2011 Workshop: Domain Adaptation Workshop: Theory and Application »
John Blitzer · Corinna Cortes · Afshin Rostamizadeh -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike E davies · Remi Gribonval · Guillaume R Obozinski -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2010 Poster: Learning Bounds for Importance Weighting »
Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2009 Poster: Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models »
Gideon S Mann · Ryan McDonald · Mehryar Mohri · Nathan Silberman · Dan Walker -
2009 Poster: Ensemble Nystrom Method »
Sanjiv Kumar · Mehryar Mohri · Ameet S Talwalkar -
2009 Spotlight: Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models »
Gideon S Mann · Ryan McDonald · Mehryar Mohri · Nathan Silberman · Dan Walker -
2009 Poster: Learning Non-Linear Combinations of Kernels »
Corinna Cortes · Mehryar Mohri · Afshin Rostamizadeh -
2009 Poster: Polynomial Semantic Indexing »
Bing Bai · Jason E Weston · David Grangier · Ronan Collobert · Kunihiko Sadamasa · Yanjun Qi · Corinna Cortes · Mehryar Mohri -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Domain Adaptation with Multiple Sources »
Yishay Mansour · Mehryar Mohri · Afshin Rostamizadeh -
2008 Spotlight: Domain Adaptation with Multiple Sources »
Yishay Mansour · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Rademacher Complexity Bounds for Non-I.I.D. Processes »
Mehryar Mohri · Afshin Rostamizadeh -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 2) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 1) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Poster: Stability Bounds for Non-i.i.d. Processes »
Mehryar Mohri · Afshin Rostamizadeh -
2006 Poster: On Transductive Regression »
Corinna Cortes · Mehryar Mohri