Timezone: »
User behavior data in recommender systems are driven by the complex interactions of many latent factors behind the users’ decision making processes. The factors are highly entangled, and may range from high-level ones that govern user intentions, to low-level ones that characterize a user’s preference when executing an intention. Learning representations that uncover and disentangle these latent factors can bring enhanced robustness, interpretability, and controllability. However, learning such disentangled representations from user behavior is challenging, and remains largely neglected by the existing literature. In this paper, we present the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE) for learning disentangled representations from user behavior. Our approach achieves macro disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a shirt or a cellphone), while capturing the preference of a user regarding the different concepts separately. A micro-disentanglement regularizer, stemming from an information-theoretic interpretation of VAEs, then forces each dimension of the representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). Empirical results show that our approach can achieve substantial improvement over the state-of-the-art baselines. We further demonstrate that the learned representations are interpretable and controllable, which can potentially lead to a new paradigm for recommendation where users are given fine-grained control over targeted aspects of the recommendation lists.
Author Information
Jianxin Ma (Alibaba Group)
Chang Zhou (Alibaba Group)
Peng Cui (Tsinghua University)
Hongxia Yang (Alibaba Group)
Wenwu Zhu (Tsinghua University)
More from the Same Authors
-
2021 Poster: CogView: Mastering Text-to-Image Generation via Transformers »
Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang -
2021 Poster: Asynchronous Decentralized Online Learning »
Jiyan Jiang · Wenpeng Zhang · Jinjie GU · Wenwu Zhu -
2021 Poster: Integrated Latent Heterogeneity and Invariance Learning in Kernel Space »
Jiashuo Liu · Zheyuan Hu · Peng Cui · Bo Li · Zheyan Shen -
2021 Poster: Curriculum Disentangled Recommendation with Noisy Multi-feedback »
Hong Chen · Yudong Chen · Xin Wang · Ruobing Xie · Rui Wang · Feng Xia · Wenwu Zhu -
2021 Poster: Disentangled Contrastive Learning on Graphs »
Haoyang Li · Xin Wang · Ziwei Zhang · Zehuan Yuan · Hang Li · Wenwu Zhu -
2021 Poster: Graph Differentiable Architecture Search with Structure Learning »
Yijian Qin · Xin Wang · Zeyang Zhang · Wenwu Zhu -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2021 Poster: UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis »
Zhu Zhang · Jianxin Ma · Chang Zhou · Rui Men · Zhikang Li · Ming Ding · Jie Tang · Jingren Zhou · Hongxia Yang -
2020 Poster: Implicit Graph Neural Networks »
Fangda Gu · Heng Chang · Wenwu Zhu · Somayeh Sojoudi · Laurent El Ghaoui -
2020 Poster: Counterfactual Prediction for Bundle Treatment »
Hao Zou · Peng Cui · Bo Li · Zheyan Shen · Jianxin Ma · Hongxia Yang · Yue He -
2020 Poster: CogLTX: Applying BERT to Long Texts »
Ming Ding · Chang Zhou · Hongxia Yang · Jie Tang -
2019 Poster: Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos »
Yitian Yuan · Lin Ma · Jingwen Wang · Wei Liu · Wenwu Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang